Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 27(4): 579-588, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30626555

ABSTRACT

The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties. Lead compounds were selected based on potency in a cellular screen and physicochemical properties. Among these, 12 had good aqueous solubility, permeability and long-term solid-state stability at 23 °C. Compound 12 also displayed comparable or better efficacy in cellular assays relative to SFN and had in vivo activity in a mouse cigarette smoke challenge model of acute oxidative stress.


Subject(s)
Antioxidants/pharmacology , Cyclobutanes/pharmacology , Drug Discovery , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , Antioxidants/chemical synthesis , Antioxidants/pharmacokinetics , Cell Line , Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacokinetics , Gene Expression , Heme Oxygenase-1/genetics , Humans , Isothiocyanates/chemical synthesis , Isothiocyanates/pharmacokinetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Molecular Structure , Oxidative Stress/drug effects , Rats , Solubility , Structure-Activity Relationship , Sulfoxides , Thiocarbamates/chemical synthesis , Thiocarbamates/pharmacokinetics , Thiocarbamates/pharmacology
2.
J Pharmacol Exp Ther ; 363(1): 114-125, 2017 10.
Article in English | MEDLINE | ID: mdl-28790194

ABSTRACT

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress. In human bronchial epithelial cells, our Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one (PSTC), induced Nrf2 nuclear translocation, Nrf2-regulated gene expression, and downstream signaling events, including induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme activity and heme oxygenase-1 protein expression, in an Nrf2-dependent manner. As a marker of subsequent functional activity, PSTC restored oxidant (tert-butyl hydroperoxide)-induced glutathione depletion. The compound's engagement of the Nrf2 signaling pathway translated to an in vivo setting, with induction of Nrf2-regulated gene expression and NQO1 enzyme activity, as well as restoration of oxidant (ozone)-induced glutathione depletion, occurring in the lungs of PSTC-treated rodents. Under disease conditions, PSTC engaged its target, inducing the expression of Nrf2-regulated genes in human bronchial epithelial cells derived from patients with chronic obstructive pulmonary disease, as well as in the lungs of cigarette smoke-exposed mice. Subsequent to the latter, a dose-dependent inhibition of cigarette smoke-induced pulmonary inflammation was observed. Finally, in contrast with bardoxolone methyl and sulforaphane, PSTC did not inhibit interleukin-1ß-induced nuclear factor-κB translocation or insulin-induced S6 phosphorylation in human cells, emphasizing the on-target activity of this compound. In summary, we characterize a potent, selective Nrf2 activator that offers protection against pulmonary oxidative stress in several cellular and in vivo models.


Subject(s)
Coumarins/therapeutic use , Epithelial Cells/drug effects , Lung/drug effects , NF-E2-Related Factor 2/agonists , Oxidative Stress/drug effects , Pneumonia/prevention & control , Pulmonary Disease, Chronic Obstructive/metabolism , Sulfones/therapeutic use , Animals , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Coumarins/administration & dosage , Coumarins/blood , Disease Models, Animal , Drug Discovery , Epithelial Cells/metabolism , Gene Expression/drug effects , Glutathione/metabolism , HEK293 Cells , Humans , Lung/metabolism , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone)/genetics , NF-E2-Related Factor 2/genetics , Ozone/toxicity , Pneumonia/etiology , Pneumonia/metabolism , Protein Transport , RNA, Small Interfering/genetics , Rats, Wistar , Smoking/adverse effects , Sulfones/administration & dosage , Sulfones/blood , Transfection
3.
J Med Chem ; 59(8): 3991-4006, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27031670

ABSTRACT

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction. X-ray crystallographic screening identified three distinct "hot-spots" for fragment binding within the NRF2 binding pocket of KEAP1, allowing progression of a weak fragment hit to molecules with nanomolar affinity for KEAP1 while maintaining drug-like properties. This work resulted in a promising lead compound which exhibits tight and selective binding to KEAP1, and activates the NRF2 antioxidant response in cellular and in vivo models, thereby providing a high quality chemical probe to explore the therapeutic potential of disrupting the KEAP1-NRF2 interaction.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Cells, Cultured , Crystallography, X-Ray , Drug Discovery , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Mice , NF-E2-Related Factor 2/chemistry , Protein Binding
4.
J Pharmacol Exp Ther ; 330(3): 922-31, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19498103

ABSTRACT

Clinical utility of phosphodiesterase 4 (PDE4) inhibitors as anti-inflammatory agents has, to date, been limited by adverse effects including nausea and emesis, making accurate assessment of emetic versus anti-inflammatory potencies critical to the development of inhibitors with improved therapeutic indices. In the present study we determined the in vitro and in vivo anti-inflammatory potencies of the first-generation PDE4 inhibitor, rolipram, the second-generation inhibitors, roflumilast and cilomilast, and a novel third generation inhibitor, 1-ethyl-5-{5-[(4-methyl-1-piperazinyl)methyl]-1,3,4-oxadiazol-2-yl}-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine (EPPA-1). The rank-order potency against lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha production by human peripheral blood mononuclear cells was roflumilast (IC(50) = 5 nM) > EPPA-1 (38) > rolipram (269) > cilomilast (389), and against LPS-induced pulmonary neutrophilia in the rat was EPPA-1 (D(50) = 0.042 mg/kg) > roflumilast (0.24) > rolipram (3.34) > cilomilast (4.54). Pica, the consumption of non-nutritive substances in response to gastrointestinal stress, was used as a surrogate measure for emesis, giving a rank-order potency of rolipram (D(50) = 0.495 mg/kg) > roflumilast (1.6) > cilomilast (6.4) > EPPA-1 (24.3). The low and high emetogenic activities of EPPA-1 and rolipram, respectively, detected in the pica model were confirmed in a second surrogate model of emesis, reversal of alpha(2)-adrenoceptor-mediated anesthesia in the mouse. The rank order of therapeutic indices derived in the rat [(pica D(50))/(neutrophilia D(50))] was EPPA-1 (578) > roflumilast (6.4) > cilomilast (1.4) > rolipram (0.15), consistent with the rank order derived in the ferret [(emesis D(50))/(neutrophilia D(50))]. These data validate rat pica feeding as a surrogate for PDE4 inhibitor-induced emesis in higher species, and identify EPPA-1 as a novel PDE4 inhibitor with an improved therapeutic index.


Subject(s)
Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Pica/psychology , Piperazines/pharmacology , Pyridines/pharmacology , Vomiting/chemically induced , Aminopyridines/pharmacology , Animals , Benzamides/pharmacology , Carboxylic Acids/pharmacology , Cyclohexanecarboxylic Acids , Cyclopropanes/pharmacology , Ferrets , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Nitriles/pharmacology , Pica/chemically induced , Rats , Rats, Inbred Lew , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/physiology , Rolipram/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...