Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4011, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35817768

ABSTRACT

The synthesis of ultra-stable chiral porous organic cages (POCs) and their controllable chiral self-sorting at the molecular and supramolecular level remains challening. Herein, we report the design and synthesis of a serial of axially chiral porous aromatic cages (PAC 1-S and 1-R) with high chemical stability. The theoretical and experimental studies on the chiral self-sorting reveal that the exclusive self-recognition on cage formation is an enthalpy-driven process while the chiral narcissistic and self-sorting on supramolecular assembly of racemic cages can be precisely regulated by π-π and C-H…π interactions from different solvents. Regarding the chemical stability, the crystallinity of PAC 1 is maintained in aqueous solvents, such as boiling water, high-concentrated acid and alkali; mixtures of solvents, such as 1 M H2SO4/MeOH/H2O solution, are also tolerated. Investigations on the chiral sensing performance show that PAC 1 enables enantioselective recognition of axially chiral biaryl molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...