Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 191: 51-55, 2018 08.
Article in English | MEDLINE | ID: mdl-29803917

ABSTRACT

We investigated a method to obtain a stable contrast mode on the TiO2(110) surface. The stable contrast rate is approximately 95% with a W-coated Si cantilever, which demonstrates that a stable tip apex plays an important role to obtain the real geometry of the surface during atomic force microscopy measurement. Information related to surface structure and tunnelling current on the TiO2(110) surface can be obtained by the W-coated Si cantilever. It is possible to investigate the electronic structure and surface potential on the TiO2(110) surface with atomic resolution. In particular, the proposed method could be widely applied to investigate the catalytic activity and the mechanism of a catalytic reaction by a metal-coated tip in the future.

2.
Nanotechnology ; 27(50): 505704, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27861162

ABSTRACT

We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

3.
Nanotechnology ; 26(19): 195701, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25895740

ABSTRACT

We investigated the capability of obtaining atomic resolution surface potential images by frequency-modulation Kelvin probe force microscopy (FM-KPFM) without bias voltage feedback. We theoretically derived equations representing the relationship between the contact potential difference and the frequency shift (Δf) of an oscillating cantilever. For the first time, we obtained atomic resolution images and site-dependent spectroscopic curves for Δf and VLCPD on a Si (111)-7 × 7 surface. FM-KPFM without bias voltage feedback does not involve the influence of the FM-KPFM controller because it has no deviation from a parabolic dependence of Δf on the dc-bias voltage. It is particularly suitable for investigation on molecular electronics and organic photovoltaics, because electron or ion movement induced by dc bias is avoided and the electrochemical reactions are inhibited.

4.
Nanotechnology ; 24(22): 225701, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23633495

ABSTRACT

The effect of stray capacitance on potential measurements was investigated using Kelvin probe force microscopy (KPFM) at room temperature under ultra-high vacuum (UHV). The stray capacitance effect was explored in three modes, including frequency modulation (FM), amplitude modulation (AM) and heterodyne amplitude modulation (heterodyne AM). We showed theoretically that the distance-dependence of the modulated electrostatic force in AM-KPFM is significantly weaker than in FM- and heterodyne AM-KPFMs and that the stray capacitance of the cantilever, which seriously influences the potential measurements in AM-KPFM, was almost completely eliminated in FM- and heterodyne AM-KPFMs. We experimentally confirmed that the contact potential difference (CPD) in AM-KPFM, which compensates the electrostatic force between the tip and the surface, was significantly larger than in FM- and heterodyne AM-KPFMs due to the stray capacitance effect. We also compared the atomic scale corrugations in the local contact potential difference (LCPD) among the three modes on the surface of Si(111)-7 × 7 finding that the LCPD corrugation in AM-KPFM was significantly weaker than in FM- and heterodyne AM-KPFMs under low AC bias voltage conditions. The very weak LCPD corrugation in AM-KPFM was attributed to the artefact induced by topographic feedback.

SELECTION OF CITATIONS
SEARCH DETAIL
...