Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Phenomics ; 2021: 6793457, 2021.
Article in English | MEDLINE | ID: mdl-33860277

ABSTRACT

Panax quinquefolium is a perennial herbaceous plant that contains many beneficial ginsenosides with diverse pharmacological effects. 24(R)-pseudoginsenoside F11 is specific to P. quinquefolium, a useful biomarker for distinguishing this species from other related plants. However, because of its nonconjugated property and the complexity of existing detection methods, this biomarker cannot be used as the identification standard. We herein present a stable 24(R)-pseudoginsenoside F11 fingerprint spectrum in the terahertz band, thereby proving that F11 can be detected and quantitatively analyzed via terahertz spectroscopy. We also analyzed the sample by high-performance liquid chromatography-triple quadrupole mass spectrometry. The difference between the normalized data for the two analytical methods was less than 5%. Furthermore, P. quinquefolium from different areas and other substances can be clearly distinguished based on these terahertz spectra with a standard principal component analysis. Our method is a fast, simple, and cost-effective approach for identifying and quantitatively analyzing P. quinquefolium.

2.
RSC Adv ; 11(25): 14970-14979, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424024

ABSTRACT

Alloying with transition elements is proven to be an effective way to improve the methanol electro-oxidation reaction (MOR) and oxygen reduction reaction (ORR) activities of Pt catalysts for direct methanol fuel cells (DMFCs). Through a process of rapid solidification and two-step dealloying, we have successfully fabricated three-dimensional mesoporous PtM (M = Co, Cu, Ni) nanowire catalysts, which show much enhanced electrocatalytic properties towards MOR and ORR in comparison with the commercial Pt/C catalyst. Electrochemical tests indicate that alloying with Cu presents the best ORR activities, the half-wave potential of which is 42 mV positively shifted compared with the commercial Pt/C (0.892 V vs. RHE). Meanwhile, the PtM nanowire catalysts also possess good CO tolerance as well as stability for 10 000 cycles of cyclic voltammetry scanning. This convenient preparation method is promising for the development of high performance electrocatalysts for MOR and ORR in DMFCs.

3.
Nat Commun ; 11(1): 590, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32001713

ABSTRACT

Hydrogen evolution reaction (HER) is more sluggish in alkaline than in acidic media because of the additional energy required for water dissociation. Numerous catalysts, including NiO, that offer active sites for water dissociation have been extensively investigated. Yet, the overall HER performance of NiO is still limited by lacking favorable H adsorption sites. Here we show a strategy to activate NiO through carbon doping, which creates under-coordinated Ni sites favorable for H adsorption. DFT calculations reveal that carbon dopant decreases the energy barrier of Heyrovsky step from 1.17 eV to 0.81 eV, suggesting the carbon also serves as a hot-spot for the dissociation of water molecules in water-alkali HER. As a result, the carbon doped NiO catalyst achieves an ultralow overpotential of 27 mV at 10 mA cm-2, and a low Tafel slope of 36 mV dec-1, representing the best performance among the state-of-the-art NiO catalysts.

4.
Environ Sci Technol ; 53(13): 7714-7723, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31198021

ABSTRACT

The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.


Subject(s)
Lanthanoid Series Elements , Metals, Rare Earth , Adsorption , Bacteria , Escherichia coli
5.
Biomed Opt Express ; 9(11): 5467-5476, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30460140

ABSTRACT

Homocysteine is an amino acid related to metabolism in human vivo, which is closely related to cardiovascular disease, senile dementia, bone fracture, et al. Currently, the usual medical test methods for homocysteine include high performance liquid chromatography (HPLC), fluorescence polarization immunoassay (FPIA) and enzyme-linked immunosorbent assay (ELISA), which are time-consuming or expensive. In this paper, we first analyze the vibration and rotation of homocysteine molecules by using density functional theory, and then we ensure that the theoretical absorption peaks are located in the range of the terahertz spectrum. Then, based on the terahertz time-domain spectroscopy system, we measured the absorption spectrum of homocysteine under different concentrations. It is found that as the detection of the concentration, the terahertz results present higher accuracy than that of the laser Raman spectrum, which can be used as the reference for the evaluation of pathological stage. These results are of great significance for the exact and quick diagnosis of homocysteine-related diseases in clinical medicine.

6.
Nano Lett ; 17(12): 7171-7176, 2017 12 13.
Article in English | MEDLINE | ID: mdl-28872874

ABSTRACT

Low-density metal foams have many potential applications in electronics, energy storage, catalytic supports, fuel cells, sensors, and medical devices. Here, we report a new method for fabricating ultralight, conductive silver aerogel monoliths with predictable densities using silver nanowires. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions. As-prepared silver aerogels have unique anisotropic microporous structures, with density precisely controlled by the nanowire concentration, down to 4.8 mg/cm3 and an electrical conductivity up to 51 000 S/m. Mechanical studies show that silver nanowire aerogels exhibit "elastic stiffening" behavior with a Young's modulus up to 16 800 Pa.

7.
Adv Sci (Weinh) ; 4(7): 1700107, 2017 07.
Article in English | MEDLINE | ID: mdl-28725532

ABSTRACT

Paper-based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li-ion batteries, Li-S batteries, Li-oxygen batteries. This review summarizes recent advances in the synthesis of paper-based electrodes, including paper-supported electrodes and paper-like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper-based electrodes and energy storage devices.

8.
Nanoscale ; 9(23): 8007-8014, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28574072

ABSTRACT

CeO2 is widely used as a commercial CO oxidation catalyst, but it suffers from high-temperature (>200 °C) complete conversion. Despite enormous efforts made to promote its low-temperature activity by interfacing CuO and CeO2, it is still a long-standing challenge to balance the desired catalytic activity with high-yield preparation. Creating intimate synergistic interfaces between Cu and Ce species and exploring surfactant-free large-scale methods are both critical and challenging. To address these concerns, we synthesized highly active Cu doped CeO2 nanowires for low-temperature CO oxidation, relying on intentionally maneuvering precursor alloy compositions and a high-yield dealloying method. The favorable one-dimensional doping structure inherited from the nanowire bundles of the as-dealloyed precursors, clean surfaces and intimate synergistic effects between Cu and Ce contribute to excellent CO oxidation performances, with 5% room-temperature conversion triggered at 35 °C and 100% conversion at 100 °C. 96% of O2 selectivity at 88 °C in CO preferential oxidation was also obtained. The long-term durability for 24 hours at 100% CO conversion without any decay confirms the robust characteristics of the catalysts. Moreover, this work offers some insights into the reasonable design of alloy precursors to realize property-oriented alloys to nanowires batch transformation for the study of industrial catalysts.

9.
Small ; 13(16)2017 04.
Article in English | MEDLINE | ID: mdl-28160416

ABSTRACT

Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V4+ /V5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices.

10.
ACS Appl Mater Interfaces ; 7(36): 20215-23, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26305112

ABSTRACT

Highly sensitive and efficient biosensors play a crucial role in clinical, environmental, industrial, and agricultural applications, and tremendous efforts have been dedicated to advanced electrode materials with superior electrochemical activities and low cost. Here, we report a three-dimensional binder-free Cu foam-supported Cu2O nanothorn array electrode developed via facile electrochemistry. The nanothorns growing in situ along the specific direction of <011> have single crystalline features and a mesoporous surface. When being used as a potential biosensor for nonenzyme glucose detection, the hybrid electrode exhibits multistage linear detection ranges with ultrahigh sensitivities (maximum of 97.9 mA mM(-1) cm(-2)) and an ultralow detection limit of 5 nM. Furthermore, the electrode presents outstanding selectivity and stability toward glucose detection. The distinguished performances endow this novel electrode with powerful reliability for analyzing human serum samples. These unprecedented sensing characteristics could be ascribed to the synergistic action of superior electrochemical catalytic activity of nanothorn arrays with dramatically enhanced surface area and intimate contact between the active material (Cu2O) and current collector (Cu foam), concurrently supplying good conductivity for electron/ion transport during glucose biosensing. Significantly, our findings could guide the fabrication of new metal oxide nanostructures with well-organized morphologies and unique properties as well as low materials cost.


Subject(s)
Blood Glucose/analysis , Copper/chemistry , Electrochemical Techniques , Nanostructures/chemistry , Biosensing Techniques , Catalysis , Electrodes , Humans , Microarray Analysis , Oxidation-Reduction
11.
ACS Appl Mater Interfaces ; 4(11): 6038-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23113728

ABSTRACT

The anodization of Pd in H2SO4 solutions has been investigated by electrochemical measurements, considering the effect of the applied potential, polarization time, and electrolyte concentration. The anodization and subsequent reduction result in the formation of Pd nanostructures on the electrode surface. Compared to the bulk Pd, the anodization of Pd in H2SO4 solutions leads to different cyclic voltammetry (CV) behaviors including well-separated adsorption/desorption peaks in the hydrogen region and relatively larger reduction peak areas. The improvement of electrochemically active surface areas (EASAs) of the anodized Pd samples is strongly dependent upon the electrolyte concentration, and the optimum H2SO4 concentration is 1.0 M. Both the applied potential and polarization time have a significant influence on the anodization process of Pd. For the given electrolyte concentration, there exist desirable applied potential and polarization time to achieve greater EASAs. The EASAs of the anodized Pd obtained under the optimum polarization conditions can reach as large as 890 times compared to its geometric area. In addition, the formation mechanism of Pd nanostructures on the electrode surface has been discussed on the basis of microstructural analysis. The present findings provide a promising route to fabricate nanostructured Pd electrocatalysts with ultrahigh EASAs.


Subject(s)
Electrodes , Electrolytes/chemistry , Electroplating/methods , Palladium/chemistry , Sulfuric Acids/chemistry , Catalysis , Electric Conductivity , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...