Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5729, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977723

ABSTRACT

Risk prediction for subsequent cardiovascular events remains an unmet clinical issue in patients with coronary artery disease. We aimed to investigate prognostic metabolic biomarkers by considering both shared and distinct metabolic disturbance associated with the composite and individual cardiovascular events. Here, we conducted an untargeted metabolomics analysis for 333 incident cardiovascular events and 333 matched controls. The cardiovascular events were designated as cardiovascular death, myocardial infarction/stroke and heart failure. A total of 23 shared differential metabolites were associated with the composite of cardiovascular events. The majority were middle and long chain acylcarnitines. Distinct metabolic patterns for individual events were revealed, and glycerophospholipids alteration was specific to heart failure. Notably, the addition of metabolites to clinical markers significantly improved heart failure risk prediction. This study highlights the potential significance of plasma metabolites on tailed risk assessment of cardiovascular events, and strengthens the understanding of the heterogenic mechanisms across different events.


Subject(s)
Biomarkers , Coronary Artery Disease , Metabolomics , Humans , Coronary Artery Disease/blood , Male , Female , Middle Aged , Aged , Biomarkers/blood , Myocardial Infarction/blood , Carnitine/blood , Carnitine/analogs & derivatives , Carnitine/metabolism , Heart Failure/blood , Heart Failure/metabolism , Prognosis , Risk Assessment , Case-Control Studies , Stroke/blood , Stroke/metabolism , Metabolome , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/metabolism , Risk Factors
2.
Transl Psychiatry ; 14(1): 163, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531835

ABSTRACT

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Humans , Adolescent , Bipolar Disorder/metabolism , Depressive Disorder, Major/metabolism , Schizophrenia/metabolism , Metabolomics , Metabolome
3.
Org Biomol Chem ; 19(43): 9358-9368, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34632469

ABSTRACT

Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.


Subject(s)
Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...