Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
RSC Adv ; 13(9): 5762-5769, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816084

ABSTRACT

Multifunctional integration is the focus of hydrogel-based flexible sensors, and formation of a dual network (DN) could shed light on the fabrication of hydrogels with multifunctionality and enhanced properties. In this study, a DN hydrogel was fabricated by the self-assembly of herbal molecule glycyrrhizic acid (GA) as the first hydrogel network and subsequent photocrosslinking of methacrylated sodium alginate (SA-MA) to form the second network. Profiting from the good compatibility between the two hydrogel networks, the obtained DN hydrogels with a homogeneous porous microstructure were endowed with remarkably enlarged stretching (114.5%) and compression (74.4%) strains. In addition, they were demonstrated to display excellent bacteriostatic activity (>99.9%) against Escherichia coli and Staphylococcus aureus owing to the synergetic antibacterial effect of GA and SA-MA. The DN hydrogels as strain sensors possessed high sensitivity (GF = 1.39), linear sensing (R 2 > 0.99), rapid response (180 ms), and good stability (1300 times) for human motion detection. Besides, the DN hydrogels could also be used to conduct pressure sensing such as application of heavy weights and even human pulses. All results suggest that the developed DN hydrogels have great potential in serving as epidermal and implantable flexible sensors for human health monitoring.

2.
RSC Adv ; 12(52): 33761-33771, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36505714

ABSTRACT

Tetracyclines (TCs) prevent the growth of peptide chains and the synthesis of proteins, and they are widely used to inhibit Gram-positive and -negative bacteria. For the detection of tetracyclines in cell and in vitro, a convenient and simple detection system based on nitrogen-doped cyan carbon quantum dots (C-CQDs) was developed. C-CQDs have excellent excitation-independent properties, the best optimal excitation peak is 360 nm and the best emission peak is 480 nm. Based on the inner filter effect (IFE), the fluorescence intensity of C-CQDs in solution decreases with the increase of tetracyclines. In the range of 0-100 µM, C-CQDs present a good linear relationship with three tetracyclines (CTC, TET, OCT), with R 2 all greater than 0.999. C-CQDs can detect tetracycline in milk samples with recovery in the range of 98.2-103.6%, which demonstrates their potential and broad application in real samples. Furthermore, C-CQDs exhibit excellent lysosomal targeting, as indicated by a Pearson's coefficient of 0.914 and an overlap of 0.985. The internalisation of C-CQDs was mainly affected by lipid raft-mediated endocytosis in endocytic pathway experiments. These experiments indicate that C-CQDs can be effectively used to detect TC content and target lysosomes as an alternative to commercial dyes.

3.
Front Plant Sci ; 13: 1085409, 2022.
Article in English | MEDLINE | ID: mdl-36570905

ABSTRACT

Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121430, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35679741

ABSTRACT

Aggregation-induced emission luminogens (AIEgens) have garnered significant attention because of their outstanding photophysical characteristics. AIEgens are used in fluorescence imaging, sensors, tumor treatment, and other related fields. However, the synthese of these AIEgens are relatively complicated and requires expensive raw materials. These drawbacks limit their applications and development to a certain extent. In this study, using cheap and convenient materials, we developed a new type of carbon dots (O-CDs) using a one-step solvothermal method, which has the potential to become a new AIEgen. O-CDs exhibit different fluorescence colors in different solvents, and they exist as monomers in ethylic acid and, ethanol alcohol, etc., exhibiting blue fluorescence. After adding water, the fluorescence of O-CDs gradually turns orange red, because the internal rotation of the disulfide bond molecules is restricted and the AIE effect occurs. Using the unique AIE performance of O-CDs, we fabricated an anti-counterfeiting luminous ink, that can be used for encryption in the reversible double switch mode.


Subject(s)
Carbon , Neoplasms , Carbon/chemistry , Fluorescent Dyes/chemistry , Humans , Optical Imaging/methods , Solvents/chemistry
5.
Environ Pollut ; 303: 119076, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35240268

ABSTRACT

Denitrification, as both origins and sinks of N2O, occurs extensively, and is of critical importance for regulating N2O emissions in acidified soils. However, whether soil acidification stimulates N2O emissions, and if so for what reason contributes to stimulate the emissions is uncertain and how the N2O fractions from fungal (ffD) and bacterial (fbD) denitrification change with soil pH is unclear. Thus, a pH gradient (6.2, 7.1, 8.7) was set via manipulating cropland soils (initial pH 8.7) in North China to illustrate the effect of soil acidification on fungal and bacterial denitrification after the addition of KNO3 and glucose. For source partitioning, we used and compared SP/δ18O mapping approach (SP/δ18O MAP) and acetylene inhibition technique combined isotope two endmember mixing model (AIT-IEM). The results showed significantly higher N2O emissions in the acidified soils (pH 6.2 and pH 7.1) compared with the initial soil (pH 8.7). The cumulative N2O emissions during the whole incubation period (15 days) ranged from 7.1 mg N kg-1 for pH 8.7-18.9 mg N kg-1 for pH 6.2. With the addition of glucose, relative to treatments without glucose, this emission also increased with the decrement of pH values, and were significantly stimulated. Similarly, the highest N2O emissions and N2O/(N2O + N2) ratios (rN2O) were observed in the pH 6.2 treatment. But the difference was the highest cumulative N2O + N2 emissions, which were recorded in the pH 7.1 treatment based on SP/δ18O MAP. Based on both approaches, ffD values slightly increased with the acidification of soil, and bacterial denitrification was the dominant pathway in all treatments. The SP/δ18O MAP data indicated that both the rN2O and ffD were lower compared to AIT-IEM. It has been known for long that low pH may lead to high rN2O of denitrification and ffD, but our documentation of a pervasive pH-control of rN2O and ffD by utilizing combined SP/δ18O MAP and AIT-IEM is new. The results of the evaluated N2O emissions by acidified soils are finely explained by high rN2O and enhanced ffD. We argue that soil pH management should be high on the agenda for mitigating N2O emissions in the future, particularly for regions where long-term excessive nitrogen fertilizer is likely to acidify the soils.


Subject(s)
Denitrification , Soil , Acetylene , Glucose , Hydrogen-Ion Concentration , Isotopes , Nitrogen/analysis , Nitrous Oxide/analysis
6.
Huan Jing Ke Xue ; 42(7): 3232-3241, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212649

ABSTRACT

To increase crops yields, applying large amounts of fertilizers has become increasingly common in agricultural regions, resulting in NO3--N groundwater pollution. Agricultural non-point pollution is the main source of groundwater NO3--N pollution. To ensure drinking water safety and quality, it is crucial to clarify the sources of NO3--N pollution in agricultural regions. In this study, 35 sampling sites were randomly selected in the Qingdao agricultural area in 2009 and 2019. The spatial distribution of NO3--N concentration was analyzed by the inverse distance weighting method (IDW). The nitrogen and oxygen isotopes were used as a tool to trace sources of NO3--N and the SIAR model was used to quantify contribution proportion of pollution sources. The results showed that the concentration of NO3--N (average) in groundwater in Qingdao has been reduced from 38.49 mg·L-1 in 2009 to 22.37 mg·L-1 in 2019, but it is still higher than the maximum allowable concentration of NO3--N in drinking water set by the World Health Organization (WHO). The NO3--N concentration gradually increased from south to north both in 2009 and 2019. The cross diagram of δ15N-NO3- and δ18O-NO3- show that the main sources of NO3--N in groundwater in Qingdao are chemical fertilizers, soil nitrogen, and manure and sewage. Water isotopes indicate that precipitation was the main source of groundwater in Qingdao. The SIAR model results indicated that the contribution of each source ranked as follows:manure and sewage (47.42%) > soil nitrogen (27.80%) > chemical fertilizer (14.32%) > atmospheric nitrogen depositions (10.43%). From 2009 to 2019, the quality of groundwater in Qingdao has been improved, but NO3--N pollution still cannot be ignored. According to the results, prevention and control should be made to ensure the safety of drinking water and the sustainable development of agriculture.


Subject(s)
Groundwater , Water Pollutants, Chemical , Agriculture , Environmental Monitoring , Fertilizers/analysis , Nitrates/analysis , Nitrogen Isotopes/analysis , Water Pollutants, Chemical/analysis
7.
Anal Bioanal Chem ; 412(25): 6691-6705, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32642836

ABSTRACT

Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.


Subject(s)
Aptamers, Nucleotide/analysis , Biosensing Techniques/methods , Neoplasms/diagnosis , Optics and Photonics/methods , SELEX Aptamer Technique/methods , Biomarkers, Tumor/analysis , Humans
8.
Nanoscale Adv ; 1(2): 486-489, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-36132260

ABSTRACT

Herein, we report a highly sensitive colorimetric sensor for the detection of heparin based on its anti-aggregation effect of the PDDA-gold nanoparticle colloidal system. PDDA-induced non-crosslinking aggregation of gold nanoparticles is firstly investigated and the phenomenon of heparin mediated color recovery is then observed, which can be used to indicate the concentration of heparin. This method is proved to be highly sensitive and selective. Moreover, it has been successfully applied to determine human blood serum samples, the results of which demonstrate great potential practical utility with simple operations.

9.
Bioconjug Chem ; 29(11): 3527-3531, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30418760

ABSTRACT

Herein, we have developed a dual amplification strategy for ultrasensitive detection of DNA combining exonuclease III (Exo III)-assisted reaction and DNAzyme motor. DNA probes are carefully designed; thus, target recognition and the first amplification cycle are accomplished simultaneously, which makes the operation very convenient. Moreover, the self-powered DNAzyme motor may translate a single binding event into cleavage of multiple fluorescence probes, which significantly heightens the signal intensity. As a result, the limit of detection as low as 21 fM is achieved. The fluorescence intensity is found to have a linear relationship with respect to the logarithm of DNA concentration in a wide range from 100 fM to 10 nM. This proposed method shows great potential for the applications of biological studies and clinical diagnosis.


Subject(s)
DNA, Catalytic/chemistry , DNA/analysis , Exodeoxyribonucleases/chemistry , DNA Probes/chemistry , Fluorescent Dyes/chemistry , Genes, p53 , Humans , Limit of Detection , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...