Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061527

ABSTRACT

Dent disease is a rare renal tubular disease with X-linked recessive inheritance characterized by low molecular weight proteinuria (LMWP), hypercalciuria, and nephrocalcinosis. Mutations disrupting the 2Cl-/1H+ exchange activity of chloride voltage-gated channel 5 (CLCN5) have been causally linked to the most common form, Dent disease 1 (DD1), although the pathophysiological mechanisms remain unclear. Here, we conducted the whole exome capture sequencing and bioinformatics analysis within our DD1 cohort to identify two novel causal mutations in CLCN5 (c.749 G > A, p. G250D, c.829 A > C, p. T277P). Molecular dynamics simulations of ClC-5 homology model suggested that these mutations potentially may induce structural changes, destabilizing ClC-5. Overexpression of variants in vitro revealed aberrant subcellular localization in the endoplasmic reticulum (ER), significant accumulation of insoluble aggregates, and disrupted ion transport function in voltage clamp recordings. Moreover, human kidney-2 (HK-2) cells overexpressing either G250D or T277P displayed higher cell-substrate adhesion, migration capability but reduced endocytic function, as well as substantially altered transcriptomic profiles with G250D resulting in stronger deleterious effects. These cumulative findings supported pathogenic role of these ClC-5 mutations in DD1 and suggested a cellular mechanism for disrupted renal function in Dent disease patients, as well as a potential target for diagnostic biomarker or therapeutic strategy development.


Subject(s)
Dent Disease , Genetic Diseases, X-Linked , Nephrolithiasis , Humans , Dent Disease/genetics , Dent Disease/pathology , Nephrolithiasis/genetics , Mutation , Ion Transport
3.
J Genet Genomics ; 48(1): 52-62, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33771456

ABSTRACT

Although the unique organization of vertebrate cone mosaics was first described long ago, both their underlying molecular basis and physiological significance are largely unknown. Here, we demonstrate that Crumbs proteins, the key regulators of epithelial apical polarity, establish the planar cellular polarity of photoreceptors in zebrafish. Via heterophilic Crb2a-Crb2b interactions, the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors. The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors, thereby stabilizing the geometric organization of cone mosaics. Notably, loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation. These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.


Subject(s)
Membrane Proteins , Retinal Cone Photoreceptor Cells , Zebrafish Proteins , Zebrafish , Animals , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Development ; 147(22)2020 11 19.
Article in English | MEDLINE | ID: mdl-33060129

ABSTRACT

Adherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.


Subject(s)
Adherens Junctions/metabolism , Cell Movement/physiology , Cell Polarity/physiology , Guanylate Cyclase/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , rab GTP-Binding Proteins/metabolism , Adherens Junctions/genetics , Animals , Cadherins/genetics , Cadherins/metabolism , Epithelial Cells , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Guanylate Cyclase/genetics , Protein Transport/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , rab GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...