Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 14(1): 347, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210362

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) have played an important role in reducing the global malaria burden since 2000. They are a core prevention tool used widely by people at risk of malaria. The Vector Control Prequalification mechanism of the Word Health Organization (WHO-Vector Control PQ) established the testing and evaluation guidelines for LLINs before registration for public use. In the present study, two new brands of deltamethrin-impregnated nets (Yahe® LN and Panda® Net 2.0) were evaluated in an experimental hut against wild pyrethroid-resistant Anopheles gambiae s.l. in M'Bé nearby Bouaké, central Côte d'Ivoire. METHODS: The performance of Yahe® LN and Panda® Net 2.0 was compared with that of PermaNet 2.0, conventionally treated nets (CTN), and untreated net to assess the blood-feeding inhibition, deterrence, induced exophily, and mortality. RESULTS: Cone bioassay results showed that Panda® Net 2.0, PermaNet 2.0 and Yahe® LN (both unwashed and washed 20 times) induced > 95% knockdown or > 80% mortality of the susceptible Anopheles gambiae Kisumu strain. With the pyrethroid-resistant M'Bé strain, mortality rate for all treated nets did not exceed 70%. There was a significant reduction in entry and blood feeding (p < 0.05) and an increase in exophily and mortality rates (p < 0.05) with all treatments compared to untreated nets, except the CTNs. However, the personal protection induced by these treated nets decreased significantly after 20 washes. The performance of Panda® Net 2.0 was equal to PermaNet® 2.0 in terms of inhibiting blood feeding, but better than PermaNet® 2.0 in terms of mortality. CONCLUSION: This study showed that Yahe® LN and Panda® Net 2.0 met the WHO Pesticide Evaluation Scheme (WHOPES) criteria to undergo phase III trial at the community level. Due to an increasing spread and development of pyrethroid resistance in malaria vectors, control of malaria transmission must evolve into an integrated vector management relying on a large variety of efficient control tools.


Subject(s)
Anopheles/drug effects , Biological Assay/standards , Insecticide Resistance , Insecticide-Treated Bednets/standards , Insecticides/pharmacology , Mosquito Vectors/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Anopheles/physiology , Biological Assay/methods , Clinical Trials, Phase II as Topic , Cote d'Ivoire , Malaria/parasitology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Control/standards , Mosquito Vectors/parasitology
2.
Parasit Vectors ; 5: 289, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23232083

ABSTRACT

BACKGROUND: The growing development of pyrethroid resistance constitutes a serious threat to malaria control programmes and if measures are not taken in time, resistance may compromise control efforts in the foreseeable future. Prior to Long Lasting Insecticidal Nets (LLINs) distribution in Eastern Cote d'Ivoire, we conducted bioassays to inform the National Malaria Control Programme of the resistance status of the main malaria vector, Anopheles gambiae s. s. and the need for close surveillance of resistance. METHODS: Larvae of An. gambiae s. s. were collected in two areas of Adzopé (Port-Bouët and Tsassodji) and reared to adults. WHO susceptibility tests with impregnated filter papers were carried out to detect resistance to three pyrethroids commonly used to develop LLINs: permethrin 1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Molecular assays were conducted to detect M and S forms and the L1014F kdr allele in individual mosquitoes. RESULTS: Resistance, at various degrees was detected in both areas of Adzopé. Overall, populations of An. gambiae at both sites surveyed showed equivalent frequency of the L1014F kdr allele (0.67) but for all tested pyrethroids, there were significantly higher survival rates for mosquitoes from Tsassodji (32-58%) than those from Port-Bouët (3-32%) (p < 0.001), indicating the implication of resistance mechanisms other than kdr alone. During the survey period (May-June) in this forested area of Côte d'Ivoire, An. gambiae s. s. found were exclusively of the M form and were apparently selected for pyrethroid resistance through agricultural and household usage of insecticides. CONCLUSION: Prior to LLINs scaling up in Eastern Côte d'Ivoire, resistance was largely present at various levels in An. gambiae. Underlying mechanisms included the high frequency of the L1014F kdr mutation and other unidentified components, probably metabolic detoxifiers. Their impact on the efficacy of the planned strategy (LLINs) in the area should be investigated alongside careful monitoring of the trend in that resistance over time. The need for alternative insecticides to supplement or replace pyrethroids on nets must be stressed.


Subject(s)
Anopheles , Insect Vectors , Insecticide Resistance , Insecticides , Malaria/prevention & control , Pyrethrins , Animals , Anopheles/genetics , Cote d'Ivoire , Environmental Monitoring , Female , Gene Frequency , Genotype , Humans , Insect Vectors/genetics , Insecticide Resistance/genetics , Insecticide-Treated Bednets , Larva , Malaria/transmission , Mosquito Control , Mutation , Nitriles , Permethrin , Survival Rate
3.
Malar J ; 9: 167, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20553593

ABSTRACT

BACKGROUND: The spread of pyrethroid resistance in Anopheles gambiae s.s. is a critical issue for malaria vector control based on the use of insecticide-treated nets. Carbamates and organophosphates insecticides are regarded as alternatives or supplements to pyrethroids used in nets treatment. It is, therefore, essential to investigate on the susceptibility of pyrethroid resistant populations of An. gambiae s.s. to these alternative products. METHODS: In September 2004, a cross sectional survey was conducted in six localities in Côte d'Ivoire: Toumbokro, Yamoussoukro, Toumodi in the Southern Guinea savannah, Tiassalé in semi-deciduous forest, then Nieky and Abidjan in evergreen forest area. An. gambiae populations from these localities were previously reported to be highly resistant to pyrethroids insecticides. Anopheline larvae were collected from the field and reared to adults. Resistance/susceptibility to carbamates (0.4% carbosulfan, 0.1% propoxur) and organophosphates (0.4% chlorpyrifos-methyl, 1% fenitrothion) was assessed using WHO bioassay test kits for adult mosquitoes. Then, PCR assays were run to determine the molecular forms (M) and (S), as well as phenotypes for insensitive acetylcholinesterase (AChE1) due to G119S mutation. RESULTS: Bioassays showed carbamates (carbosulfan and propoxur) resistance in all tested populations of An. gambiae s.s. In addition, two out of the six tested populations (Toumodi and Tiassalé) were also resistant to organophosphates (mortality rates ranged from 29.5% to 93.3%). The M-form was predominant in tested samples (91.8%). M and S molecular forms were sympatric at two localities but no M/S hybrids were detected. The highest proportion of S-form (7.9% of An. gambiae identified) was in sample from Toumbokro, in the southern Guinea savannah. The G119S mutation was found in both M and S molecular forms with frequency from 30.9 to 35.2%. CONCLUSION: This study revealed a wide distribution of insensitive acetylcholinesterase due to the G119S mutation in both M and S molecular forms of the populations of An. gambiae s.s. tested. The low cross-resistance between carbamates and organophosphates highly suggests involvement of other resistance mechanisms such as metabolic detoxification or F290V mutation.


Subject(s)
Acetylcholinesterase/genetics , Anopheles/genetics , Carbamates/pharmacology , Insecticides/pharmacology , Organophosphates/pharmacology , Animals , Anopheles/drug effects , Anopheles/metabolism , Base Sequence , Biological Assay , Cote d'Ivoire , Insecticide Resistance/genetics , Microsatellite Repeats , Molecular Sequence Data , Mosquito Control , Phenotype , Point Mutation , Polymerase Chain Reaction , Pyrethrins/pharmacology
4.
J Chem Ecol ; 32(8): 1743-54, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16900429

ABSTRACT

Oryctes monoceros is the most serious pest in coconut plantations, causing up to 40% damage in tropical Africa, especially in Ivory Coast. With a view to reducing pest populations by olfactory trapping, field trials were carried out to assess the efficiency of a synthetic aggregation pheromone: ethyl 4-methyloctanoate (1), 4-methyloctanoic acid (2), a related volatile produced by males, and decaying palm material, either oil palm empty fruit bunches (EFB) or pieces of coconut wood (CW) of various ages. Vertical polyvinyl chloride tube traps (2 x 0.16 m with two openings in the upper half), embedded in the soil, were more efficient than 30-L pail traps 1.5 m above ground. EFB, which were inactive alone, synergized captures with synthetic pheromone. CW was more effective than EFB in comparative trials. Compound 2 did not catch any beetles when assessed with EFB, and reduced catches by 1 + EFB when tested at >10% with the pheromone. Trapping over 6 mo in 2002 and 2003 in a 19-ha coconut plot inside a 4,000-ha oil palm estate reduced damage from 3.8% in 2001 to 0.5% in 2002, then to 0.2% in 2003. Damage was 0.0% in 2004 with routine trapping using 32 traps, which caught 3369 beetles in 9 mo. The results are discussed in relation to other Dynastid palm pests and coconut protection in Ivory Coast.


Subject(s)
Arecaceae/parasitology , Behavior, Animal/drug effects , Caprylates/pharmacology , Coleoptera/drug effects , Pheromones/pharmacology , Animals , Cote d'Ivoire , Drug Synergism , Female , Gardening , Male , Pest Control, Biological/methods , Seasons , Seeds , Smell
SELECTION OF CITATIONS
SEARCH DETAIL
...