Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Prod Res ; : 1-7, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37647092

ABSTRACT

Extracts from leaves and stems of Thymelaea tartonraira (L.) All. growing in Tunisia were characterised for the presence of flavonoids and phenolic acids by LC-ESI-MS analysis. Twelve flavonoids and ten phenolic acids were detected for the first time in the aerial parts of this plant species, the most abundant compounds being gallic acid, kaempferol, catechin, chlorogenic acid, naringenin and acacetin. The extracts were subjected to in vitro antileishmanial, antifungal and cytotoxic assays, showing promising antileishmanial activity for the E6 dichloromethane extract from the stems (IC50 values of 1.12 ± 0.50 and 5.41 ± 1.84 µg/mL on L. donovani axenic and intramacrophagic amastigotes, respectively) at the level of the reference drug miltefosine for axenic model. No antifungal activity was observed against Candida albicans (CAAL) and Aspergillus fumigatus (ASFU) strains, with the exception of the E6 dichloromethane extract (IC50 value of 25.28 ± 4.89 µg/mL on CAAL93 strain). Low toxicity was also highlighted against macrophages Raw 264.7 cells. These promising results point out Thymelaea tartonraira (L.) All. extracts as a valuable source of new natural products to combat leishmaniasis.

2.
Chem Biodivers ; 20(3): e202200944, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36757004

ABSTRACT

The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-ß-D-galactopyranoside (4) along with five known compounds, daphnoretin (1), triumbelletin (2), genkwanin (3), tiliroside (5) and yuankanin (6). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin (2) and tiliroside (5) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50 =15.00±0.50 µg/ml, followed by compound 5. Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50 =46.49±2.32 µg/ml, than compound 5, with an IC50 =184.2±9.2 µg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50 =0.44±0.022 µg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 µg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.


Subject(s)
Acarbose , Flavonoids , Glycoside Hydrolase Inhibitors , Acarbose/analysis , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Antioxidants/pharmacology , Antioxidants/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Leaves/chemistry
3.
Heliyon ; 7(4): e06717, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33898835

ABSTRACT

Lipid-based drug delivery systems are widely used for enhancing the bioavailability of poorly water-soluble drugs. However, following oral intake, lipid excipients often undergo gastrointestinal lipolysis, which drastically affects drugs solubility and bioavailability. That's why developing new lipid excipients which are resistant to digestion would be of great interest. We studied here the potential role of the unconventional Chinese star anise whole seedpod oil (CSAO) as an alternative multifunctional lipid excipient. Pancreatic lipase-mediated digestion of the extracted crude oil emulsion was assessed in vitro. Pancreatic lipase, being a strict sn-1,3-regioselective lipase, showed a high (16-fold) olive oil to CSAO activity ratio, which could be attributed to fatty acids composition and triglycerides intramolecular structure. For the sake of comparison, the non-regioselective lipase Novozyme® 435 exhibited higher activity than pancreatic lipase on CSAO emulsion, perhaps due to its ability to release fatty acids from the internal sn-2 position of TAGs. Apart counteracting lipolysis, CSAO oil also showed additional biopharmaceutical benefits including moderate antioxidant and antihypertensive activities. Altogether, these findings highlight for the first time the potential use of star anise unconventional whole seedpod oil as a multifunctional lipid excipient for the development of new lipid formulations.

4.
Chem Biodivers ; 17(12): e2000758, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33164327

ABSTRACT

In the course of phytochemical and chemotaxonomical investigations of Cornulaca monacantha (Amaranthaceae), two new isoflavones, 3-(2-hydroxyphenyl)-5,7-dimethoxy-6-(methoxymethyl)-4H-1-benzopyran-4-one (1) and 7-hydroxy-3-(4-hydroxyphenyl)-5-methoxy-6-(methoxymethyl)-4H-1-benzopyran-4-one (2) were isolated from the fresh aerial parts of C. monacantha among with three known compounds named vanillic acid (3), N-cis-feruloyltyramine (4) and N-trans-feruloyltyramine (5). Their structures were elucidated by means of spectroscopic methods including one- and two-dimensional NMR and HR-ESI-MS techniques. The isolated compounds exhibited interesting antioxidant activity determined by DPPH, ABTS and TAC tests.


Subject(s)
Amaranthaceae/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Isoflavones/isolation & purification , Isoflavones/pharmacology , Magnetic Resonance Spectroscopy/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods
5.
Microb Pathog ; 142: 104106, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32109569

ABSTRACT

The strain TN638 was isolated from Tunisian soil contaminated with industrial wastewater and selected for its potent antimicrobial activity against the tested Gram positive bacteria: Staphylococcus aureus (S. aureus) ATCC 6538 and Listeria monocytogenes (L. monocytogenes) ATCCC 19117, and Gram negative bacteria: Agrobacterium tumefaciens (A. tumefaciens) ATCC 23308 and Salmonella typhimurium (S. typhimurium) ATCC 14028 and fungi: Candida albicans (C. albicans) ATCC 10231, Rhizoctonia solani (R. solani) ATCC 58938 and Fusarium sp. Solide-state fermentation (SSF) dry crude extract of the TN638 strain presents a strong inhibitory activity notably against the phytopathogenic microorganism A. tumefaciens ATCC 23308 and the two pathogenic bacteria S. aureus ATCC 6538 and L. monocytogenes ATCCC 19117 with a zone of inhibition of 48, 34 and 34 mm respectively. According to the morphological characteristic, the complete 16S rRNA gene nucleotide sequence determination [1492 bp deposited in National Center of Biotechnology Information (NCBI) database under the accession no. LN854629.1; https://www.ncbi.nlm.nih.gov/nuccore/LN854629.1/], and the phylogenetic analysis, we can deduce that our isolate is an actinomycete bacterium belonging to the genus Streptomyces and the most closely related strain was Streptomyces cavourensis (S. cavourensis) NRRL 2740T (99.9%). We propose the assignment of our strain as Streptomyces cavourensis (S. cavourensis) TN638 strain. Work-up and purification of the strain extract using different chromatographic techniques afforded seven bio-compounds namely: Cyclo-(Leu-Pro) (1), Cyclo-(Val-Pro) (2), Cyclo-(Phe-Pro) (3), nonactin (4), monactin (5), dinactin (6) and trinactin (7). The chemical structures of compounds 1-7 were confirmed by nuclear magnetic resonance (NMR) 1D and 2D spectroscopy, mass spectrometry, and comparison with literature data. The three purified diketopiperazine (DKP) derivatives (1-3), demonstrated significant antibacterial activity against A. tumefaciens ATCC 23308 and S. typhimurium ATCC 14028. The four pure macrotetrolides (4-7), exhibited strong inhibitory effect against all tested Gram positive and Gram negative bacteria notably against A. tumefaciens ATCC 23308 and S. typhimurium ATCC 14028 with a minimum inhibitory concentration (MIC) around 8 µg/mL quite similar to that of ampicillin. Thus, we propose the use of the (SSF) active extract of the S. cavourensis TN638 strain as safe biological product to control disease caused by plant pathogen A. tumefaciens. Also, the purified active molecules produced by this strain could be used in pharmaceutical field.

6.
Food Funct ; 10(1): 469-478, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30632597

ABSTRACT

The identification and isolation of bioactive compounds are of great interest in the drug delivery field, despite being a difficult task. We describe here an innovative strategy for the identification of a new gastric lipase inhibitor from star anise for the treatment of obesity. After plant screening assays for gastric lipase inhibition, star anise was selected and investigated by bioactivity guided fractionation. MALDI-TOF mass spectrometry and peptide mass fingerprinting allowed the detection of an inhibitor covalently bound to the catalytic serine of gastric lipase. A mass-directed screening approach using UPLC-HRMS and accurate mass determination searching identified the flavonoid myricitrin-5-methyl ether (M5ME) as a lipase inhibitor. The inhibitory activity was rationalized based on molecular docking, showing that M5ME is susceptible to nucleophilic attack by gastric lipase. Overall, our data suggest that M5ME may be considered as a potential candidate for future application as a gastric lipase inhibitor for the treatment of obesity.


Subject(s)
Enzyme Inhibitors/chemistry , Illicium/chemistry , Lipase/chemistry , Plant Extracts/chemistry , Stomach/enzymology , Binding Sites , Enzyme Inhibitors/isolation & purification , Kinetics , Mass Spectrometry , Molecular Docking Simulation , Plant Extracts/isolation & purification
7.
Carbohydr Polym ; 197: 451-459, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30007634

ABSTRACT

Chondroitin sulfate was extracted from the cartilage of smooth hound (CSSH) and then purified by anion exchange chromatography. The structual characteristic of CSSH was evaluated by acetate cellulose electrophoresis, FTIR, 13C NMR and SAX-HPLC. Molecular weight of CSSH was average 68.78 KDa. Disaccharide analysis indicated that CSSH was predominately composed of monosulfated disaccharides in position 6 and 4 of the N-acetylgalactosamine (45.34% and 32.49%, respectively). CSSH was tested for in vitro anticoagulant activity using the three classical coagulation assays (activated partial thromboplastin time (aPTT), prothrombine time (TT) and thrombin time (PT) tests). The finding showed that CSSH prolonged significatively (p < 0.05), aPTT, TT and PT about 1.4, 3.44 and 1.21 fold, respectively, greater than that of the negative control at a concentration of 100 µg/ml. The CSSH caused a significant antiproliferative activity against HCT116 cell, which was 79% of cell proliferation inhibition at the concentration of 1000 µg/ml. Further, CSSH presented no toxicity against the normal cells and no hemolysis towards bovine erythrocytes for all concentrations tested. CSSH demonstrated hopeful antiproliferative and anticoagulant potential, which may be used as a novel and effective drug.


Subject(s)
Anticoagulants/pharmacology , Antineoplastic Agents/pharmacology , Blood Coagulation/drug effects , Cartilage/chemistry , Chondroitin Sulfates/pharmacology , Animals , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Proliferation/drug effects , Cells, Cultured , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Hemostasis/drug effects , Humans , Sharks , Structure-Activity Relationship
8.
RSC Adv ; 8(66): 37965-37975, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-35558578

ABSTRACT

Chondroitin sulfate/dermatan sulfate (CS/DS) was extracted from Atlantic bluefin tuna (Thunnus thynnus) skin (SGAT) and was purified and characterized. SGAT was characterized by acetate cellulose electrophoresis, FTIR spectroscopy, 13C NMR spectroscopy and SAX-HPLC. According to the results obtained for specific chondroitinases (ABC and AC) and the SAX-HPLC separation of generated unsaturated repeating disaccharides, the polymer was found to contain a disaccharide monosulfated in positions 6 and 4 of GalNAc and disulfated disaccharides in different percentages. These results were confirmed by 13C NMR experiments. The average molecular mass was 24.07 kDa, as determined by PAGE analysis. SGAT was evaluated for its in vitro anticoagulant activity via activated partial thromboplastin time, thrombin time and prothrombin time tests. The polymer showed strong inhibitory activity against angiotensin I-converting enzyme (IC50 = 0.25 mg mL-1). Overall, the results suggest that this newly extracted CS/DS can be useful for pharmacological applications.

9.
Pharm Biol ; 54(4): 726-31, 2016.
Article in English | MEDLINE | ID: mdl-26429590

ABSTRACT

CONTEXT: The persistence of fascioliasis in many developing countries urges the search for simple, cheap, and effective substances. In this view, plants provide interesting molluscicidal activities thanks to the secondary metabolites they produce. The genus Solanum is known for its potent effect on vector snails. OBJECTIVE: The molluscicidal activity of Solanum elaeagnifolium Cav. (Solanaceae) seeds against Galba truncatula Müll. (Lymnaeidae), intermediate host of Fasciola hepatica L. (Fasciolidae), was evaluated. MATERIALS AND METHODS: Solanum elaeagnifolium seeds were powdered and successively extracted using n-hexane, methylene chloride, acetone, and methanol, for 20 h each. After filtration, solvents were evaporated. An acid-base treatment was conducted on seed methanolic extract to isolate total alkaloids and ß-solamarine. Total saponins fraction was obtained after successive macerations and evaporations. The molluscicidal activity was evaluated by subjecting snails, in groups of 10, for 48 h to 500 mL of extracts, fractions, and pure product aqueous solutions, each containing amounts, ranging from 1 to 50 mg of plant material in 5 mg increments. RESULTS: The methanolic extract of seeds, ß-solamarine isolated for the first time from this plant and total saponins fraction showed very potent activities on snails, giving respective median lethal concentrations (LC50) of 1.18, 0.49, and 0.94 mg/L. Total alkaloids fraction obtained from the methanolic extract was less active giving an LC50 value of 14.67 mg/L. DISCUSSION AND CONCLUSION: This study emphasizes that glycoalkaloids and saponins of Solanum elaeagnifolium are potent molluscicidal agents. Seed methanolic extract, ß-solamarine, and total saponins fraction may be used as molluscicides.


Subject(s)
Fasciola hepatica/drug effects , Lymnaea/drug effects , Molluscacides/pharmacology , Plant Extracts/pharmacology , Seeds , Solanaceous Alkaloids/pharmacology , Solanum , Animals , Fasciola hepatica/metabolism , Lymnaea/metabolism , Molluscacides/isolation & purification , Plant Extracts/isolation & purification , Snails , Solanaceous Alkaloids/isolation & purification
10.
Appl Biochem Biotechnol ; 162(3): 662-70, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19924387

ABSTRACT

The aim of the present work was to evaluate the anti-inflammatory properties of Cynara cardunculus L. (Asteraceae) during its growth using various solvents such as n-hexane, dichloromethane, acetone, and methanol for air-dried leaves and stems. The anti-inflammatory activities of crude extracts were evaluated by measuring the inhibition potency of mammalian non-pancreatic phospholipases A2 (hG-IIA). The methanol and acetone extracts of leaves harvested in February exhibit potent inhibition of hG-IIA (IC(50) = 50 and 70 microg/ml, respectively). However, the acetone extract of stems harvested in December inhibits the hG-IIA with a lower IC(50) around 130 microg/ml. Fractionation on silica gel and hydrophobic gel of the methanol extract of leaves harvested in February increases the inhibitory effect, and the IC(50) reached 10 microg/ml.


Subject(s)
Cynara/chemistry , Enzyme Inhibitors/pharmacology , Phospholipases A2, Secretory/metabolism , Plant Extracts/pharmacology , Acetone/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Hexanes/chemistry , Methanol/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...