Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Cancer Gene Ther ; 29(8-9): 1263-1275, 2022 08.
Article in English | MEDLINE | ID: mdl-35194200

ABSTRACT

DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Genes, Homeobox/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Nucleic Acids Res ; 46(7): 3339-3350, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29425303

ABSTRACT

The transcription factor PLZF (promyelocytic leukemia zinc finger protein) acts as an epigenetic regulator balancing self-renewal and differentiation of hematopoietic cells through binding to various chromatin-modifying factors. First described as a transcriptional repressor, PLZF is also associated with active transcription, although the molecular bases underlying the differences are unknown. Here, we reveal that in a hematopoietic cell line, PLZF is predominantly associated with transcribed genes. Additionally, we identify a new association between PLZF and the histone methyltransferase, EZH2 at the genomic level. We find that co-occupancy of PLZF and EZH2 on chromatin at PLZF target genes is not associated with SUZ12 or trimethylated lysine 27 of histone H3 (H3K27me3) but with the active histone mark H3K4me3 and active transcription. Removal of EZH2 leads to an increase of PLZF binding and increased gene expression. Our results suggest a new role of EZH2 in restricting PLZF positive transcriptional activity independently of its canonical PRC2 activity.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Polycomb Repressive Complex 2/genetics , Promyelocytic Leukemia Zinc Finger Protein/genetics , Transcription, Genetic , Binding Sites/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Self Renewal/genetics , Chromatin/genetics , Gene Expression Regulation/genetics , Hematopoietic Stem Cells/metabolism , Histone Methyltransferases/genetics , Histones/genetics , Humans , Neoplasm Proteins , Protein Binding/genetics , Transcription Factors
3.
Med Sci (Paris) ; 33(5): 499-505, 2017 May.
Article in French | MEDLINE | ID: mdl-28612725

ABSTRACT

Polycomb Group proteins (PcG) are repressive epigenetic factors essential for development and involved in numerous cancer processes, yet their modes of action and recruitment to specific genomic loci are not fully understood. Recently, it has been shown that the PcG protein recruitment is a dynamic process, contrary to what was foreseen in the initial hierarchical model. In addition, EZH2, a key PcG protein, can be associated to transcribed genes, challenging the former function of PcG proteins as transcriptional repressors. Furthermore, the dual role of EZH2, which can act as an oncogene or a tumor suppressor depending on the cellular type, illustrates the functional complexity of PcG proteins.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/physiology , Polycomb-Group Proteins/physiology , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Gene Regulatory Networks/genetics , Genes, Tumor Suppressor , Humans , Oncogenes/physiology , Signal Transduction/genetics
4.
Blood ; 127(15): 1881-5, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26941402

ABSTRACT

Hematopoietic stem cells (HSCs) give rise to all blood populations due to their long-term self-renewal and multipotent differentiation capacities. Because they have to persist throughout an organism's life span, HSCs tightly regulate the balance between proliferation and quiescence. Here, we investigated the role of the transcription factor promyelocytic leukemia zinc finger (plzf) in HSC fate using the Zbtb16(lu/lu)mouse model, which harbors a natural spontaneous mutation that inactivates plzf. Regenerative stress revealed that Zbtb16(lu/lu)HSCs had a lineage-skewing potential from lymphopoiesis toward myelopoiesis, an increase in the long-term-HSC pool, and a decreased repopulation potential. Furthermore, oldplzf-mutant HSCs present an amplified aging phenotype, suggesting that plzf controls age-related pathway. We found that Zbtb16(lu/lu)HSCs harbor a transcriptional signature associated with a loss of stemness and cell cycle deregulation. Lastly, cell cycle analyses revealed an important role for plzf in the regulation of the G1-S transition of HSCs. Our study reveals a new role for plzf in regulating HSC function that is linked to cell cycle regulation, and positions plzf as a key player in controlling HSC homeostasis.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/cytology , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/physiology , Mutation , Animals , Apoptosis , Cell Cycle , Cell Differentiation , Cell Lineage , Cellular Senescence , Epigenesis, Genetic , Gene Expression Profiling , Homeostasis , Lymphopoiesis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelopoiesis , Oligonucleotide Array Sequence Analysis , Phenotype , Promyelocytic Leukemia Zinc Finger Protein
5.
Nat Commun ; 6: 6094, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25615415

ABSTRACT

T-cell acute lymphoblastic leukaemias (T-ALL) are aggressive malignant proliferations characterized by high relapse rates and great genetic heterogeneity. TAL1 is amongst the most frequently deregulated oncogenes. Yet, over half of the TAL1(+) cases lack TAL1 lesions, suggesting unrecognized (epi)genetic deregulation mechanisms. Here we show that TAL1 is normally silenced in the T-cell lineage, and that the polycomb H3K27me3-repressive mark is focally diminished in TAL1(+) T-ALLs. Sequencing reveals that >20% of monoallelic TAL1(+) patients without previously known alterations display microinsertions or RAG1/2-mediated episomal reintegration in a single site 5' to TAL1. Using 'allelic-ChIP' and CrispR assays, we demonstrate that such insertions induce a selective switch from H3K27me3 to H3K27ac at the inserted but not the germline allele. We also show that, despite a considerable mechanistic diversity, the mode of oncogenic TAL1 activation, rather than expression levels, impact on clinical outcome. Altogether, these studies establish site-specific epigenetic desilencing as a mechanism of oncogenic activation.


Subject(s)
Alleles , Gene Expression Regulation, Leukemic , Polycomb-Group Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acetylation , Adult , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Genetic Loci , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Jurkat Cells , Methylation , Molecular Sequence Data , Mutagenesis, Insertional , Nuclear Proteins/metabolism , Plasmids/genetics , Polycomb-Group Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Survival Analysis , T-Cell Acute Lymphocytic Leukemia Protein 1 , Treatment Outcome
6.
PLoS One ; 7(8): e43752, 2012.
Article in English | MEDLINE | ID: mdl-22952755

ABSTRACT

BACKGROUND: Metastasis is an important step in tumor progression leading to a disseminated and often incurable disease. First steps of metastasis include down-regulation of cell adhesion molecules, alteration of cell polarity and reorganization of cytoskeleton, modifications associated with enhanced migratory properties and resistance of tumor cells to anoikis. Such modifications resemble Epithelial to Mesenchymal Transition (EMT). In breast cancer CD146 expression is associated with poor prognosis and enhanced motility. METHODOLOGY/PRINCIPAL FINDINGS: On 4 different human breast cancer cell lines, we modified CD146 expression either with shRNA technology in CD146 positive cells or with stable transfection of CD146 in negative cells. Modifications in morphology, growth and migration were evaluated. Using Q-RT-PCR, we analyzed the expression of different EMT markers. We demonstrate that high levels of CD146 are associated with loss of cell-cell contacts, expression of EMT markers, increased cell motility and increased resistance to doxorubicin or docetaxel. Experimental modulation of CD146 expression induces changes consistent with the above described characteristics: morphology, motility, growth in anchorage independent conditions and Slug mRNA variations are strictly correlated with CD146 expression. These changes are associated with modifications of ER (estrogen receptor) and Erb receptors and are enhanced by simultaneous and opposite modulation of JAM-A, or exposure to heregulin, an erb-B4 ligand. CONCLUSIONS: CD146 expression is associated with an EMT phenotype. Several molecules are affected by CD146 expression: direct or indirect signaling contributes to EMT by increasing Slug expression. CD146 may also interact with Erb signaling by modifying cell surface expression of ErbB3 and ErbB4 and increased resistance to chemotherapy. Antagonistic effects of JAM-A, a tight junction-associated protein, on CD146 promigratory effects underline the complexity of the adhesion molecules network in tumor cell migration and metastasis.


Subject(s)
Breast Neoplasms/pathology , CD146 Antigen/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Phenotype , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neuregulin-1/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...