Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38289223

ABSTRACT

The taxonomic status of strain P5891T, isolated from an Adélie penguin beak swab, was investigated. Based on the 16S rRNA gene sequence, the strain was identified as a potentially novel Corynebacterium species, with the highest sequence similarities to Corynebacterium rouxii FRC0190T (96.7 %) and Corynebacterium epidermidicanis DSM 45586T (96.6 %). The average nucleotide identity values between strain P5891T and C. rouxii FRC0190T and C. epidermidicanis DSM 45586T were 68.2 and 69.2 %, respectively. The digital DNA-DNA hybridization values between strain P5891T and C. rouxii FRC0190T and C. epidermidicanis DSM 45586T were 23.7 and 21.4 %, respectively. Phylogenetic trees based on the 16S rRNA sequence placed strain P5891T in a separate branch with Corynebacterium canis 1170T and Corynebacterium freiburgense 1045T, while a phylogenomic tree based on the Corynebacterium species core genome placed the strain next to Corynebacterium choanae 200CHT. Extensive phenotyping and genomic analyses clearly confirmed that strain P5891T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium mendelii sp. nov. is proposed, with the type strain P5891T (=CCM 8862T=LMG 31627T).


Subject(s)
Spheniscidae , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , Bacteria , Corynebacterium/genetics , Mouth
2.
Syst Appl Microbiol ; 46(4): 126424, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167755

ABSTRACT

A polyphasic taxonomic approach was used to characterize the four strains P2653T, P2652, P2498, and P2647, isolated from Antarctic regolith samples. Initial genotype screening performed by PCR fingerprinting based on repetitive sequences showed that the isolates studied formed a coherent cluster separated from the other Pseudomonas species. Identification results based on 16S rRNA gene sequences showed the highest sequence similarity with Pseudomonas graminis (99.7%), which was confirmed by multilocus sequence analysis using the rpoB, rpoD, and gyrB genes. Genome sequence comparison of P2653T with the most related P. graminis type strain DSM 11363T revealed an average nucleotide identity of 92.1% and a digital DNA-DNA hybridization value of 46.6%. The major fatty acids for all Antarctic strains were C16:0, Summed Feature 3 (C16:1ω7c/C16:1ω6c) and Summed Feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-9, and the major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The regolith strains could be differentiated from related species by the absence of arginine dihydrolase, ornithine and lysine decarboxylase and by negative tyrosine hydrolysis. The results of this polyphasic study allowed the genotypic and phenotypic differentiation of four analysed strains from the closest related species, which confirmed that the strains represent a novel species within the genus Pseudomonas, for which the name Pseudomonas petrae sp. nov. is proposed with P2653T (CCM 8850T = DSM 112068T = LMG 30619T) as the type strain.


Subject(s)
Genes, Bacterial , Phospholipids , Phospholipids/analysis , Antarctic Regions , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Phylogeny , Fatty Acids/analysis , Pseudomonas , DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
3.
Article in English | MEDLINE | ID: mdl-35442878

ABSTRACT

Strains P8930T and 478 were isolated from Antarctic glaciers located on James Ross Island and King George Island, respectively. They comprised Gram-stain-negative short rod-shaped cells forming pink pigmented colonies and exhibited identical 16S rRNA gene sequences and highly similar MALDI TOF mass spectra, and hence were assigned as representatives of the same species. Phylogenetic analysis based on 16S rRNA gene sequences assigned both isolates to the genus Pedobacter and showed Pedobacter frigidisoli and Pedobacter terrae to be their closest phylogenetic neighbours, with 97.4 and 97.2 % 16S rRNA gene sequence similarities, respectively. These low similarity values were below the threshold similarity value of 98.7%, confirming the delineation of a new bacterial species. Further genomic characterization included whole-genome sequencing accompanied by average nucleotide identity (ANI) and digital DNA-DNA hybridization calculations, and characterization of the genome features. The ANI values between P8930T and P. frigidisoli RP-3-11T and P. terrae DSM 17933T were 79.7 and 77.6 %, respectively, and the value between P. frigidisoli RP-3-11T and P. terrae DSM 17933T was 77.7 %, clearly demonstrating the phylogenetic distance and the novelty of strain P8930T. Further characterization included analysis of cellular fatty acids, quinones and polar lipids, and comprehensive biotyping. All the obtained results proved the separation of strains P8930T and 478 from the other validly named Pedobacter species, and confirmed that they represent a new species for which the name Pedobacter fastidiosus sp. nov. is proposed. The type strain is P8930T (=CCM 8938T=LMG 32098T).


Subject(s)
Pedobacter , Antarctic Regions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Ecosystem , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Epidemiol Mikrobiol Imunol ; 61(3): 67-71, 2012 Sep.
Article in Czech | MEDLINE | ID: mdl-23173299

ABSTRACT

Every laboratory sometimes needs to transport microbial cultures. This is done mostly for the purposes of the research, teaching, or reference testing, at the national and international level. To ensure the highest possible safety for humans, animals and the environment, it is necessary to follow rules relating to the handling and transport of bacterial or fungal cultures. The article presents the basic rules for the transport of microorganisms and relevant links providing information about the shipping of infectious substances.


Subject(s)
Disease Transmission, Infectious/prevention & control , Microbiological Techniques/standards , Safety , Specimen Handling/standards , Transportation/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...