Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36110196

ABSTRACT

Ethanol consumption is widely accepted despite its addictive properties and its mind-altering effects. This study aimed to assess the effects of Dichrocephala integrifolia against, memory impairment, on a mouse model of chronic and binges ethanol feeding. Mice were divided, into groups of 8 animals each, and received distilled water, Dichrocephala integrifolia aqueous extract (25; 50; 100; or 200 mg/kg) or memantine (200 mg/kg) once a day, while fe, with Lieber-DeCarli control (sham group only) or Lieber-DeCarli ethanol diet ad libitum for 28 days. The Y maze and the novel object recognition (NOR) tests were used to evaluate spatial short-term and recognition memory, respectively. Malondialdehyde, nitric oxide, glutathione levels, and proinflammatory cytokines (Il-1ß, TNF-α, and Il-6) were evaluated in brain homogenates following behavioral assessments. The results showed that chronic ethanol administration in mice was associated with a significant (p < 0.001) reduction in the spontaneous alternation percentage and the discrimination index, in the Y maze and the NOR tests, respectively. It significantly (p < 0.01) increased oxidative stress and inflammation markers levels in the brain. Dichrocephala integrifolia (100 and 200 mg/kg) as well as memantine (200 mg/kg) significantly (p < 0.001) increased the percentage of spontaneous alternation and the discrimination index, in the Y maze and NOR tests, respectively. Dichrocephala integrifolia (100 and 200 mg/kg) likewise memantine (200 mg/kg) significantly (p < 0.01) alleviated ethanol-induced increase, in the brain malondialdehyde level, nitric oxide, Il-1ß, TNF-α, and Il-6. From these findings, it can be concluded that Dichrocephala integrifolia counteracted memory impairment, oxidative stress, and neuroinflammation induced by chronic ethanol consumption in mice.

2.
Front Pharmacol ; 9: 751, 2018.
Article in English | MEDLINE | ID: mdl-30065650

ABSTRACT

Cissus quadrangularis (C. quadrangularis) is a plant of the Vitaceae family known for its anticonvulsant effects in traditional medicine. The objective of this study was to elucidate the anxiolytic and antiepileptic effects of aqueous extract of C. quadrangularis. The mice were divided into different groups and treated for seven consecutive days as follows: a negative control group that received distilled water, po, four test groups that received four doses of the plant (37.22, 93.05, 186.11, and 372.21 mg/kg, po), and a positive control group that received sodium valproate (300 mg/kg, ip). One hour after the first treatment (first day), epilepsy was induced by intraperitoneal administration of a single dose of pilocarpine (360 mg/kg). On the seventh day, the anxiolytic effects of the extract were evaluated in the epileptic mice using the elevated plus maze (EPM) and open field (OP) paradigms. Antioxidant activities and the involvement of gabaergic neurotransmission were determined by measuring the levels of malondialdehyde, reduced glutathione (GSH), GABA, and GABA-transaminase (GABA-T) in the hippocampus of sacrificed epileptic mice. The results show that the extract of C. quadrangularis significantly and dose-dependently increased the latency to clonic and generalized tonic-clonic seizures and decreased the number and duration of seizures. In the EPM, the extract of C. quadrangularis significantly increased the number of entries and the time spent into the open arms and reduced the number of entries and the time spent into the closed arms as well as the number of rearing. The extract of C. quadrangularis also increased the number of crossing, and the time spent in the center of the OP. The level of MDA and the activity of GABA-T were significantly decreased by the extract of C. quadrangularis while reduced GSH and GABA levels were increased. The results suggest that the anticonvulsant activities of C. quadrangularis are accompanied by its anxiolytics effects. These effects may be supported by its antioxidant properties and mediated at least in part by the GABA neurotransmission.

3.
Front Pharmacol ; 8: 847, 2017.
Article in English | MEDLINE | ID: mdl-29209218

ABSTRACT

Alzheimer's disease the most common form of dementia in the elderly is a neurodegenerative disease that affects 44 millions of people worldwide. The first treatments against Alzheimer's disease are acetylcholinesterase inhibitors; however, these medications are associated with many side effects. Dichrocephala integrifolia is a traditional herb widely used by indigenous population of Cameroon to treat and prevent Alzheimer's disease and for memory improvement. In this study, we evaluated the effect of the decoction prepared from leaves of D. integrifolia, on scopolamine-induced memory impairment in mice. Seven groups of six animals were used. The first two groups received distilled water for the distilled water and scopolamine groups. The four test groups received one of the four doses of the decoction of the plant (35, 87.5, 175 or 350 mg/kg p.o.) and the positive control group received tacrine (10 mg/kg), a cholinesterase inhibitor used in the treatment of Alzheimer's disease, during 10 consecutive days. Scopolamine (1 mg/kg), a cholinergic receptor blocker, administered 30 min after treatments, was used to induce memory impairment to all groups except the distilled water group on day 10 of drug treatment. The behavioral paradigms used to evaluate the effects of the treatment were the elevated plus maze for learning and memory, Y maze for spatial short-term memory, the novel object recognition for recognition memory and Morris water maze for the evaluation of spatial long-term memory. After behavioral tests, animals were sacrificed and brains of a subset were used for the assessment of some biomarkers of oxidative stress (malondialdehyde and reduced glutathione levels) and for the evaluation of the acetylcholinesterase activity. From the remaining subset brains, histopathological analysis was performed. The results of this study showed that, D. integrifolia at the doses of 87.5 and 350 mg/kg significantly (p < 0.01) improved spatial short-term and long-term memory, by increasing the percentage of spontaneous alternation in the Y maze and reducing the escape latency in the Morris water maze. Furthermore, the results of histopathological evaluation showed that D. integrifolia attenuated the neuronal death in the hippocampus induced by scopolamine. The main finding of this work is that D. integrifolia improves learning capacities and counteracts the memory impairment induced by scopolamine. Thus, D. integrifolia can be a promising plant resource for the management of Alzheimer's disease and memory loss.

4.
Front Pharmacol ; 8: 440, 2017.
Article in English | MEDLINE | ID: mdl-28713279

ABSTRACT

In this study, we investigated antiepileptogenic and neuroprotective effects of the aqueous extract of Pergularia daemia roots (PDR) using in vivo and in vitro experimental models. In in vivo studies, status epilepticus caused by pilocarpine injection triggers epileptogenesis which evolves during about 1-2 weeks. After 2 h of status epilepticus, mice were treated during the epileptogenesis period for 7 days with sodium valproate and vitamin C (standards which demonstrated to alter epileptogenesis), or Pergularia daemia. The animals were then, 1 week after status epilepticus, challenged with acute pentylenetetrazole (PTZ) administration to test behaviorally the susceptibility to a convulsant agent of animals treated or not with the plan extract. Memory was assessed after PTZ administration in the elevated plus maze and T-maze paradigms at 24 and 48 h. Antioxidant and acetylcholinesterase activities were determined in the hippocampus after sacrifice, in vitro studies were conducted using embryonic rat primary cortical cultures exposed to L-glutamate. Cell survival rate was measured and apoptotic and necrotic cell death determined. The results showed that chronic oral administration of PDR significantly and dose-dependently increased the latency to myoclonic jerks, clonic seizures and generalized tonic-clonic seizures, and the seizure score. In addition, PDR at all doses (from 4.9 to 49 mg/kg) significantly decreased the initial and retention transfer latencies in the elevated plus maze. Interestingly PDR at the same doses significantly increased the time spent and the number of entries in T-maze novel arm. PDR significantly increased the activities of acetylcholinesterase and antioxidant enzymes superoxide dismutase, catalase, and total glutathione and proteins, and decreased malondialdehyde level. Furthermore, PDR increased viability rate of primary cortical neurons after L-glutamate-induced excitotoxicity, in a dose dependent manner. Altogether these results suggest that PDR has antiepileptogenic and neuroprotective effects, which could be mediated by antioxidant and antiapoptotic activities.

5.
Behav Neurol ; 2017: 5952897, 2017.
Article in English | MEDLINE | ID: mdl-28386162

ABSTRACT

Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis) leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes-catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation-were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects.


Subject(s)
Memory Disorders/drug therapy , Memory/drug effects , Mitragyna/chemistry , Plant Preparations/pharmacology , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Female , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Mice , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Leaves/chemistry , Scopolamine
6.
Afr J Tradit Complement Altern Med ; 8(5 Suppl): 181-90, 2011.
Article in English | MEDLINE | ID: mdl-22754073

ABSTRACT

Millettia thonningii, Ocinum sanctum and Securitaca longepedunculaca are used in traditional medicine in Cameroon to treat epilepsy, insomnia and headaches. Animal models of epilepsy (maximal electroshock (MES), n-methyl-d-aspartate (NMDA), pentylenetetrazol (PTZ), isonicotinic hydrazide acid (INH), picrotoxine (PIC) and strychnine (STR)-induced convulsions or turning behavior were used to evaluate anticonvulsant activity while diazepam-induced sleep test was used to evaluate sedative activity of the plants. Four doses of extracts were used for each plant (100, 200, 500 and 1000 mg/kg). At a dose of 1000 mg/kg, Millettia thonningii protected 60 and 90% of mice against MES and PTZ-induced convulsions, respectively. At the same dose, Millettia thonningii also protected 80% of mice against NMDA-induced turning behavior. At a dose of 1000 mg/kg, Ocinum sanctum provided complete protection against MES, PIC and STR- induced convulsions and 83.3% of protection in PTZ test. Securitaca longepedunculata completely protected (100%) mice in PIC test at a dose of 200 mg/kg, in MES test at a dose of 500 mg/kg and in PTZ test at a dose of 1000 mg/kg. 66.7% of mice were protected against STR-induced convulsions. All the three plants showed also sedative properties for they increased significantly and in a dose dependent manner the total sleep time induced by diazepam. The total sleep time of the control groups was multiplied by a factor of 3 at least by each extract. The presence of sedative and anticonvulsant activity in the three plants could explain their use in traditional medicine in the treatment of epilepsy and insomnia in Cameroon.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Hypnotics and Sedatives/pharmacology , Millettia/chemistry , Polygalaceae/chemistry , Seizures/drug therapy , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Administration, Oral , Analysis of Variance , Animals , Anticonvulsants/therapeutic use , Cameroon , Diazepam/administration & dosage , Dose-Response Relationship, Drug , Electroshock , Epilepsy/chemically induced , Hypnotics and Sedatives/therapeutic use , Male , Medicine, Traditional , Mice , Plants, Medicinal/chemistry , Seizures/chemically induced , Sleep Initiation and Maintenance Disorders/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...