Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Wellcome Open Res ; 7: 216, 2022.
Article in English | MEDLINE | ID: mdl-37153452

ABSTRACT

Background: Seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine plus amodiaquine (SPAQ) is a malaria prevention strategy recommended since 2012 by the World Health Organization (WHO) for children under 5 years. In Senegal, the scaling up of SMC started in 2013 in the south-eastern regions of the country with an extension of the target to 10 years old children. The scaling up of SMC requires regular evaluation of the strategy as recommended by the WHO. This study was conducted to evaluate the effectiveness of SMC. Methods: A case-control study was conducted in some villages of the health districts of Saraya and Kedougou in the Kedougou region from July to December 2016. A case was a sick child, aged 3 months to 10 years, seen in consultation and with a positive malaria rapid diagnostic test (RDT). The control was a child of the same age group with a negative RDT and living in the same compound as the case or in a neighbouring compound. Each case was matched with two controls. Exposure to SMC was assessed by interviewing the mothers/caretakers and by checking the SMC administration card. Results: Overall, 492 children, including 164 cases and 328 controls, were recruited in our study. Their mean ages were 5.32 (+/- 2.15) and 4.44 (+/-2.25) years for cases and controls, respectively. The number of boys was higher in both cases (55.49%; CI 95%=47.54-63.24%) and controls (51,22%; CI 95%=45.83-56.58%). Net ownership was 85.80% among cases and 90.85% among controls (p=0,053). The proportion of controls who received SMC was higher than that of cases (98.17% vs 85.98% and p=1.10 -7). The protective effectiveness of SMC was 89% (OR= 0.12 (CI 95%=0.04-0.28)). Conclusions: SMC is an effective strategy in the control of malaria in children. Case-control studies are a good approach for monitoring the efficacy of drugs administered during SMC.

2.
Wellcome Open Res ; 7: 179, 2022.
Article in English | MEDLINE | ID: mdl-37521536

ABSTRACT

Background : Seasonal malaria chemoprevention (SMC) has been adopted and implemented in the southern regions of Senegal in children aged between three and 120 months since 2013. Scaling up this strategy requires its evaluation to assess the impact. This study was carried out to determine the dynamics of Plasmodium falciparum carriage before and after two years of SMC implementation. Methods : Four household surveys were conducted in villages in the health district of Saraya, which is a SMC implementation area in Senegal. These villages were selected using probability proportional to size sampling. Each selected village was divided into segments containing at least 50 children. In each segment, a household questionnaire was administered to the parents or legal representatives of children aged three to 120 months. Blood smears were collected to determine P. falciparum prevalence by microscopy one month before the first round of SMC, one month after the last round of the first SMC campaign and two years after the start of the implementation. Results : A total of 2008 children were included with a mean average age of 4.81 (+/-2.73) years. Of the study population, 50.33% were more than five years old and 50.3% were male. In 2013, mosquito net ownership was 99.4 % before the SMC campaign and 97.4% after. In 2015, it was 36.6% before and 45.8% after the campaign. In 2013, the prevalence of plasmodium carriage was 11.8% before and 6.1% after the SMC campaign. In 2015, the prevalence was 4.9% before the administration of SMC and this increased up to 15.3% after. Malaria prevalence was high among children over five years old and in boys. Conclusions : The decrease in Plasmodium falciparum parasite prevalence, which subsequently increased after two years of SMC implementation in this study, suggests adding an extra cycle of the SMC or adjusting the administration period.

3.
Malar J ; 20(1): 310, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34246268

ABSTRACT

BACKGROUND: MOSKI KIT® is a fun tool designed to interest children for prevention and management of malaria. This study was carried out with the objective to assess the short- and long-term impacts of this tool on the knowledge, attitudes, and practices of school children, and on the transmission of the knowledge received at the household level as well. METHOD: The study took place in elementary schools in the city centre (with relatively low endemicity) and in the Niayes area (at high risk of anopheline and malaria) in the Dakar region of Senegal. The various schools chosen for this study were divided into an intervention group and a control group. The intervention schools were also divided into two subgroups, a full package subgroup and another partial package. During this study three surveys were conducted, the first one before exposure to the MOSKI KIT®, the second one a week later and the third a year later. For the control schools only one survey was conducted and at the same time than the third for the intervention schools. Two household surveys (a week and a year after exposure) were also conducted for the intervention schools against one for the control schools. RESULTS: Before sensitization, the proportion of school children with a grade above or equal to the average was 50% for the complete package subgroup (CPS) and 53% for the partial package subgroup (PPS). A week later, these proportions were 69% and 71%, respectively for the complete and PPSs. A year later, they were 99.4% for the CPS, 98.1% for the PPS and 99.5% for the control group; The number of children who spoke to their parents about malaria was greater in intervention schools than that of control schools. They were 46.63% and 32.58%, respectively in intervention and control schools. CONCLUSION: The MOSKI KIT, has enabled an increase of the knowledge of school children about malaria in the short term and favoured its retention in the long term. However, its impact was not felt on their attitudes and practices.


Subject(s)
Health Knowledge, Attitudes, Practice , Malaria/prevention & control , Students , Child , Female , Humans , Male , Parents , Schools , Senegal , Surveys and Questionnaires
4.
Pharmaceut Med ; 32(3): 189-200, 2018.
Article in English | MEDLINE | ID: mdl-29983573

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) using sulfadoxine-pyrimethamine plus amodiaquine has been introduced in 12 African countries. Additional strategies for safety monitoring are needed to supplement national systems of spontaneous reporting that are known to under represent the incidence of adverse reactions. OBJECTIVES: This study aimed to determine if adverse event (AE) reporting could be improved using a smartphone application provided to village health workers, or by active follow-up using a symptom card provided to caregivers. METHODS: Two strategies to improve reporting of AEs during SMC campaigns were evaluated, in comparison with the national system of spontaneous reporting, in 11 health post areas in Senegal. In each health post, an average of approximately 4000 children under 10 years of age received SMC treatment each month for 3 months during the 2015 malaria transmission season-a total of 134,000 treatments. In three health posts (serving approximately 14,000 children), caregivers were encouraged to report any adverse reactions to the nurse at the health post or to a community health worker (CHW) in their village, who had been trained to use a smartphone application to report the event (enhanced spontaneous reporting). In two health posts (approximately 10,000 children), active follow-up of children at home was organized after each SMC campaign to ask about AEs that caregivers had been asked to record on a symptom card (active surveillance). Six health posts (approximately 23,000 children) followed the national system of spontaneous reporting using the national reporting (yellow) form. Each AE report was assessed by a panel to determine likely association with SMC drugs. RESULTS: The incidence of reported AEs was 2.4, 30.6, and 21.6 per 1000 children treated per month, using the national system, enhanced spontaneous reporting, and active surveillance, respectively. The most commonly reported symptoms were vomiting, fever, and abdominal pain. The incidence of vomiting, known to be caused by amodiaquine, was similar using both innovative methods (10/1000 in the first month, decreasing to 2.5/1000 in the third month). Despite increased surveillance, no serious adverse drug reactions were detected. CONCLUSION: Training CHWs in each village and health facility staff to report AEs using a mobile phone application led to much higher reporting rates than through the national system. This approach is feasible and acceptable, and could be further improved by strengthening laboratory investigation and the collection of control data immediately prior to SMC campaigns.

SELECTION OF CITATIONS
SEARCH DETAIL
...