Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Magn ; 58(8)2022 Aug.
Article in English | MEDLINE | ID: mdl-36864851

ABSTRACT

Magnetic nanowires (MNWs) can have their moments reversed via several mechanisms that are controlled using the composition, length, diameter, and density of nanowires in arrays as-synthesized or as individual nanoparticles in assays or gels. This tailoring of magnetic reversal leads to unique properties that can be used as a signature for reading out the type of MNW for applications as nano-barcodes. When synthesized inside track-etched polycarbonate membranes, the resulting MNW-embedded membranes can be used as biocompatible bandaids for detection without contact or optical sighting. When etched out of the growth template, free-floating MNWs are internalized by cells at 37 °C such that cells and/or exosomes can be collected and detected. In applications of cryopreservation, MNWs can be suspended in cryopreservation agents (CPAs) for injection into the blood vessels of tissues and organs as they are vitrified to -200 °C. Using an alternating magnetic field, the MNWs can then be nanowarmed rapidly to prevent crystallization and uniformly to prevent cracking of specimens, for example, as grafts or transplants. This invited paper is a review of recent progress in the specific bioapplications of MNWs to barcodes, biocomposites, and nanowarmers.

2.
Sensors (Basel) ; 20(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365832

ABSTRACT

The remarkable multimodal functionalities of magnetic nanoparticles, conferred by their size and morphology, are very important in resolving challenges slowing the progression of nanobiotechnology. The rapid and revolutionary expansion of magnetic nanoparticles in nanobiotechnology, especially in nanomedicine and therapeutics, demands an overview of the current state of the art for synthesizing and characterizing magnetic nanoparticles. In this review, we explain the synthesis routes for tailoring the size, morphology, composition, and magnetic properties of the magnetic nanoparticles. The pros and cons of the most popularly used characterization techniques for determining the aforementioned parameters, with particular focus on nanomedicine and biosensing applications, are discussed. Moreover, we provide numerous biomedical applications and highlight their challenges and requirements that must be met using the magnetic nanoparticles to achieve the most effective outcomes. Finally, we conclude this review by providing an insight towards resolving the persisting challenges and the future directions. This review should be an excellent source of information for beginners in this field who are looking for a groundbreaking start but they have been overwhelmed by the volume of literature.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Magnetics , Nanomedicine , Physical Phenomena
3.
Nanotechnology ; 29(20): 205706, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29473824

ABSTRACT

We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young's modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young's modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young's moduli reported in recent literature, and we prove the insufficiency of the Young's modulus for predicting the mechanical behavior of GaN NWs.

SELECTION OF CITATIONS
SEARCH DETAIL
...