Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Plant J ; 99(4): 673-685, 2019 08.
Article in English | MEDLINE | ID: mdl-31009129

ABSTRACT

Nuclear male-sterile mutants with non-conditional, recessive and strictly monogenic inheritance are useful for both hybrid and conventional breeding systems, and have long been a research focus for many crops. In allohexaploid wheat, however, genic redundancy results in rarity of such mutants, with the ethyl methanesulfonate-induced mutant ms5 among the few reported to date. Here, we identify TaMs5 as a glycosylphosphatidylinositol-anchored lipid transfer protein required for normal pollen exine development, and by transgenic complementation demonstrate that TaMs5-A restores fertility to ms5. We show ms5 locates to a centromere-proximal interval and has a sterility inheritance pattern modulated by TaMs5-D but not TaMs5-B. We describe two allelic forms of TaMs5-D, one of which is non-functional and confers mono-factorial inheritance of sterility. The second form is functional but shows incomplete dominance. Consistent with reduced functionality, transcript abundance in developing anthers was found to be lower for TaMs5-D than TaMs5-A. At the 3B homoeolocus, we found only non-functional alleles among 178 diverse hexaploid and tetraploid wheats that include landraces and Triticum dicoccoides. Apparent ubiquity of non-functional TaMs5-B alleles suggests loss-of-function arose early in wheat evolution and, therefore, at most knockout of two homoeoloci is required for sterility. This work provides genetic information, resources and tools required for successful implementation of ms5 sterility in breeding systems for bread and durum wheats.


Subject(s)
Plant Proteins/metabolism , Triticum/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Plant Infertility/genetics , Plant Infertility/physiology , Plant Proteins/genetics , Pollen/metabolism , Pollen/physiology , Triticum/genetics , Triticum/physiology
3.
BMC Plant Biol ; 18(1): 332, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30518316

ABSTRACT

BACKGROUND: In flowering plants, lipid biosynthesis and transport within anthers is essential for male reproductive success. TaMs1, a dominant wheat fertility gene located on chromosome 4BS, has been previously fine mapped and identified to encode a glycosylphosphatidylinositol (GPI)-anchored non-specific lipid transfer protein (nsLTP). Although this gene is critical for pollen exine development, details of its function remains poorly understood. RESULTS: In this study, we report that TaMs1 is only expressed from the B sub-genome, with highest transcript abundance detected in anthers containing microspores undergoing pre-meiosis through to meiosis. ß-glucuronidase transcriptional fusions further revealed that TaMs1 is expressed throughout all anther cell-types. TaMs1 was identified to be expressed at an earlier stage of anther development relative to genes reported to be necessary for sporopollenin precursor biosynthesis. In anthers missing a functional TaMs1 (ms1c deletion mutant), these same genes were not observed to be mis-regulated, indicating an independent function for TaMs1 in pollen development. Exogenous hormone treatments on GUS reporter lines suggest that TaMs1 expression is increased by both indole-3-acetic acid (IAA) and abscisic acid (ABA). Translational fusion constructs showed that TaMs1 is targeted to the plasma membrane. CONCLUSIONS: In summary, TaMs1 is a wheat fertility gene, expressed early in anther development and encodes a GPI-LTP targeted to the plasma membrane. The work presented provides a new insight into the process of wheat pollen development.


Subject(s)
Glycosylphosphatidylinositols/metabolism , Lipid Metabolism/genetics , Plant Proteins/genetics , Pollen/growth & development , Transcription Factors/genetics , Triticum/genetics , Abscisic Acid/metabolism , Flowers/growth & development , Flowers/metabolism , Gene Expression Profiling , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Pollen/genetics , Real-Time Polymerase Chain Reaction , Transcription Factors/metabolism , Triticum/metabolism
4.
Sci Rep ; 8(1): 17087, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459322

ABSTRACT

Non-specific Lipid Transfer Proteins (nsLTPs) are involved in numerous biological processes. To date, only a fraction of wheat (Triticum aestivum L.) nsLTPs (TaLTPs) have been identified, and even fewer have been functionally analysed. In this study, the identification, classification, phylogenetic reconstruction, chromosome distribution, functional annotation and expression profiles of TaLTPs were analysed. 461 putative TaLTPs were identified from the wheat genome and classified into five types (1, 2, C, D and G). Phylogenetic analysis of the TaLTPs along with nsLTPs from Arabidopsis thaliana and rice, showed that all five types were shared across species, however, some type 2 TaLTPs formed wheat-specific clades. Gene duplication analysis indicated that tandem duplications contributed to the expansion of this gene family in wheat. Analysis of RNA sequencing data showed that TaLTPs were expressed in most tissues and stages of wheat development. Further, we refined the expression profile of anther-enriched expressed genes, and identified potential cis-elements regulating their expression specificity. This analysis provides a valuable resource towards elucidating the function of TaLTP family members during wheat development, aids our understanding of the evolution and expansion of the TaLTP gene family and, additionally, provides new information for developing wheat male-sterile lines with application to hybrid breeding.


Subject(s)
Carrier Proteins/analysis , Carrier Proteins/metabolism , Genome, Plant , Plant Proteins/analysis , Plant Proteins/metabolism , Triticum/metabolism , Gene Expression Regulation, Plant , Phylogeny , Triticum/genetics , Triticum/growth & development
5.
J Exp Bot ; 69(3): 399-412, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29202197

ABSTRACT

Bread wheat is strongly autogamous; however, an opportunity for outcrossing occurs when self-pollination fails and florets open. The first phase of floret opening at anthesis is short and induced by lodicule turgidity. Some wheat florets re-open post-anthesis for several days, known as the 'second opening', for which the underlying mechanisms are largely unknown. We performed detailed physiological, anatomical, and histological investigations to understand the biological basis of the flower opening process. Wheat florets were observed open when the ovary was unfertilized. Unfertilized ovaries significantly increased in radial size post-anthesis, pushing the lemma and palea apart to open the florets. The absence of fertile pollen was not directly linked to this, but anther filament elongation coincided with initiation of ovary swelling. The pericarp of unfertilized ovaries did not undergo degeneration as normally seen in developing grains, instead pericarp cells remained intact and enlarged, leading to increased ovary radial size. This is a novel role for the ovary pericarp in wheat flower opening, and the knowledge is useful for facilitating cross-pollination in hybrid breeding. Ovary swelling may represent a survival mechanism in autogamous cereals such as wheat and barley, ensuring seed set in the absence of self-fertilization and increasing genetic diversity through cross-pollination.


Subject(s)
Flowers/physiology , Pollination/physiology , Triticum/physiology , Fertilization
6.
Nat Commun ; 8(1): 869, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021581

ABSTRACT

The current rate of yield gain in crops is insufficient to meet the predicted demands. Capturing the yield boost from heterosis is one of the few technologies that offers rapid gain. Hybrids are widely used for cereals, maize and rice, but it has been a challenge to develop a viable hybrid system for bread wheat due to the wheat genome complexity, which is both large and hexaploid. Wheat is our most widely grown crop providing 20% of the calories for humans. Here, we describe the identification of Ms1, a gene proposed for use in large-scale, low-cost production of male-sterile (ms) female lines necessary for hybrid wheat seed production. We show that Ms1 completely restores fertility to ms1d, and encodes a glycosylphosphatidylinositol-anchored lipid transfer protein, necessary for pollen exine development. This represents a key step towards developing a robust hybridization platform in wheat.Heterosis can rapidly boost yield in crop species but development of hybrid-breeding systems for bread wheat remains a challenge. Here, Tucker et al. describe the molecular identification of the wheat Ms1 gene and discuss its potential for large-scale hybrid seed production in wheat.


Subject(s)
Carrier Proteins/genetics , Triticum/genetics , Fertility/genetics , Genes, Plant , Genetic Complementation Test , Hybridization, Genetic , Plant Breeding , Plant Proteins/genetics , Pollen/genetics , Pollen/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...