Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982941

ABSTRACT

Efficient and selective oxidation of ethylene glycol is challenging due to uncontrollable C-C bond cleavage. We propose an electrochemical strategy for the selective electrooxidation of ethylene glycol to sythesise lactic acid on a Ni-based electrocatalyst by controlling the pH value of the electrolyte solution.

2.
Chemistry ; 30(18): e202303830, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38271542

ABSTRACT

Electrochemical epoxidation of olefins using water as an oxygen atom source is emerging as an alternative approach for an atom economic and sustainable method towards a highly selective synthesis of epoxides. We report an electrochemical procedure for epoxidation of cyclooctene using water as the sole oxygen atom source over a sodium dodecyl sulfonate (SDS) modified nickel hydroxide Ni(OH)2 catalyst directly grown on Ni foam. The SDS modification facilitates the mass transfer of cyclooctene towards the anode, thus achieving a 2.5-fold higher conversion with more than 90 % selectivity towards the corresponding epoxide compared with pure Ni(OH)2 catalyst.

3.
Chemistry ; 27(68): 17038-17048, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34596277

ABSTRACT

By using the crystalline precursor decomposition approach and direct co-precipitation the composition and mesostructure of cobalt-based spinels can be controlled. A systematic substitution of cobalt with redox-active iron and redox-inactive magnesium and aluminum in a cobalt spinel with anisotropic particle morphology with a preferred 111 surface termination is presented, resulting in a substitution series including Co3 O4 , MgCo2 O4 , Co2 FeO4 , Co2 AlO4 and CoFe2 O4 . The role of redox pairs in the spinels is investigated in chemical water oxidation by using ceric ammonium nitrate (CAN test), electrochemical oxygen evolution reaction (OER) and H2 O2 decomposition. Studying the effect of dominant surface termination, isotropic Co3 O4 and CoFe2 O4 catalysts with more or less spherical particles are compared to their anisotropic analogues. For CAN-test and OER, Co3+ plays the major role for high activity. In H2 O2 decomposition, Co2+ reveals itself to be of major importance. Redox active cations in the structure enhance the catalytic activity in all reactions. A benefit of a predominant 111 surface termination depends on the cobalt oxidation state in the as-prepared catalysts and the investigated reaction.

4.
Chemistry ; 27(68): 17145-17158, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34496083

ABSTRACT

In a combined experimental and theoretical study we assess the role of Co incorporation on the OER activity of LaCox Fe1-x O3 . Phase pure perovskites were synthesized up to x = 0 . 300 in 0.025/0.050 steps. HAADF STEM and EDX analysis points towards FeO2 -terminated (001)-facets in LaFeO3 , in accordance with the stability diagram obtained from density functional theory calculations with a Hubbard U term (DFT+U). Linear sweep voltammetry conducted in a rotating disk electrode setup shows a reduction of the OER overpotential and a nonmonotonic trend with x, with double layer capacitance measurements indicating an intrinsic nature of activity. This is supported by DFT+U results that show reduced overpotentials for both Fe and Co reaction sites with the latter reaching values of 0.32-0.40 V, ∼0.3 V lower than for Fe. This correlates with a stronger reduction of the binding energy difference of the *O and *OH intermediates towards an optimum value of 1.6 eV for x = 0 . 250 , the OH deprotonation being the potential limiting step in most cases. Significant variations of the magnetic moments of both surface and subsurface Co and Fe during OER demonstrate that the beneficial effect is a result of a concerted action involving many surrounding ions, which extends the concept of the active site.

SELECTION OF CITATIONS
SEARCH DETAIL
...