Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 377(2148): 20180095, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31079581

ABSTRACT

Solar energetic particles are an integral part of the physical processes related with space weather. We present a review for the acceleration mechanisms related to the explosive phenomena (flares and/or coronal mass ejections, CMEs) inside the solar corona. For more than 40 years, the main two-dimensional cartoon representing our understanding of the explosive phenomena inside the solar corona remained almost unchanged. The acceleration mechanisms related to solar flares and CMEs also remained unchanged and were part of the same cartoon. In this review, we revise the standard cartoon and present evidence from recent global magnetohydrodynamic simulations that support the argument that explosive phenomena will lead to the spontaneous formation of current sheets in different parts of the erupting magnetic structure. The evolution of the large-scale current sheets and their fragmentation will lead to strong turbulence and turbulent reconnection during solar flares and turbulent shocks. In other words, the acceleration mechanism in flares and CME-driven shocks may be the same, and their difference will be the overall magnetic topology, the ambient plasma parameters, and the duration of the unstable driver. This article is part of the theme issue 'Solar eruptions and their space weather impact'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2148): 20180100, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31079582

ABSTRACT

Solar energetic particle (SEP) events are related to both solar flares and coronal mass ejections (CMEs) and they present energy spectra that span from a few keV up to several GeV. A wealth of observations from widely distributed spacecraft have revealed that SEPs fill very broad regions of the heliosphere, often all around the Sun. High-energy SEPs can sometimes be energetic enough to penetrate all the way down to the surface of the Earth and thus be recorded on the ground as ground level enhancements (GLEs). The conditions of the radiation environment are currently unpredictable due to an as-yet incomplete understanding of solar eruptions and their corresponding relation to SEP events. This is because the complex nature and the interplay of the injection, acceleration and transport processes undergone by the SEPs in the solar corona and the interplanetary space prevent us from establishing an accurate understanding (based on observations and modelling). In this work, we review the current status of knowledge on SEPs, focusing on GLEs and multi-spacecraft events. We extensively discuss the forecasting and nowcasting efforts of SEPs, dividing these into three categories. Finally, we report on the current open questions and the possible direction of future research efforts. This article is part of the theme issue 'Solar eruptions and their space weather impact'.

SELECTION OF CITATIONS
SEARCH DETAIL
...