Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Oncol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38976997

ABSTRACT

BACKGROUND: Current guidelines recommend use of adjuvant imatinib therapy for many patients with gastrointestinal stromal tumours (GISTs); however, its optimal treatment duration is unknown and some patient groups do not benefit from the therapy. We aimed to apply state-of-the-art, interpretable artificial intelligence (ie, predictions or prescription logic that can be easily understood) methods on real-world data to establish which groups of patients with GISTs should receive adjuvant imatinib, its optimal treatment duration, and the benefits conferred by this therapy. METHODS: In this observational cohort study, we considered for inclusion all patients who underwent resection of primary, non-metastatic GISTs at the Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY, USA) between Oct 1, 1982, and Dec 31, 2017, and who were classified as intermediate or high risk according to the Armed Forces Institute of Pathology Miettinen criteria and had complete follow-up data with no missing entries. A counterfactual random forest model, which used predictors of recurrence (mitotic count, tumour size, and tumour site) and imatinib duration to infer the probability of recurrence at 7 years for a given patient under each duration of imatinib treatment, was trained in the MSKCC cohort. Optimal policy trees (OPTs), a state-of-the-art interpretable AI-based method, were used to read the counterfactual random forest model by training a decision tree with the counterfactual predictions. The OPT recommendations were externally validated in two cohorts of patients from Poland (the Polish Clinical GIST Registry), who underwent GIST resection between Dec 1, 1981, and Dec 31, 2011, and from Spain (the Spanish Group for Research in Sarcomas), who underwent resection between Oct 1, 1987, and Jan 30, 2011. FINDINGS: Among 1007 patients who underwent GIST surgery in MSKCC, 117 were included in the internal cohort; for the external cohorts, the Polish cohort comprised 363 patients and the Spanish cohort comprised 239 patients. The OPT did not recommend imatinib for patients with GISTs of gastric origin measuring less than 15·9 cm with a mitotic count of less than 11·5 mitoses per 5 mm2 or for those with small GISTs (<5·4 cm) of any site with a count of less than 11·5 mitoses per 5 mm2. In this cohort, the OPT cutoffs had a sensitivity of 92·7% (95% CI 82·4-98·0) and a specificity of 33·9% (22·3-47·0). The application of these cutoffs in the two external cohorts would have spared 38 (29%) of 131 patients in the Spanish cohort and 44 (35%) of 126 patients in the Polish cohort from unnecessary treatment with imatinib. Meanwhile, the risk of undertreating patients in these cohorts was minimal (sensitivity 95·4% [95% CI 89·5-98·5] in the Spanish cohort and 92·4% [88·3-95·4] in the Polish cohort). The OPT tested 33 different durations of imatinib treatment (<5 years) and found that 5 years of treatment conferred the most benefit. INTERPRETATION: If the identified patient subgroups were applied in clinical practice, as many as a third of the current cohort of candidates who do not benefit from adjuvant imatinib would be encouraged to not receive imatinib, subsequently avoiding unnecessary toxicity on patients and financial strain on health-care systems. Our finding that 5 years is the optimal duration of imatinib treatment could be the best source of evidence to inform clinical practice until 2028, when a randomised controlled trial with the same aims is expected to report its findings. FUNDING: National Cancer Institute.

2.
EClinicalMedicine ; 64: 102200, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37731933

ABSTRACT

Background: There are several models that predict the risk of recurrence following resection of localised, primary gastrointestinal stromal tumour (GIST). However, assessment of calibration is not always feasible and when performed, calibration of current GIST models appears to be suboptimal. We aimed to develop a prognostic model to predict the recurrence of GIST after surgery with both good discrimination and calibration by uncovering and harnessing the non-linear relationships among variables that predict recurrence. Methods: In this observational cohort study, the data of 395 adult patients who underwent complete resection (R0 or R1) of a localised, primary GIST in the pre-imatinib era at Memorial Sloan Kettering Cancer Center (NY, USA) (recruited 1982-2001) and a European consortium (Spanish Group for Research in Sarcomas, 80 sites) (recruited 1987-2011) were used to train an interpretable Artificial Intelligence (AI)-based model called Optimal Classification Trees (OCT). The OCT predicted the probability of recurrence after surgery by capturing non-linear relationships among predictors of recurrence. The data of an additional 596 patients from another European consortium (Polish Clinical GIST Registry, 7 sites) (recruited 1981-2013) who were also treated in the pre-imatinib era were used to externally validate the OCT predictions with regard to discrimination (Harrell's C-index and Brier score) and calibration (calibration curve, Brier score, and Hosmer-Lemeshow test). The calibration of the Memorial Sloan Kettering (MSK) GIST nomogram was used as a comparative gold standard. We also evaluated the clinical utility of the OCT and the MSK nomogram by performing a Decision Curve Analysis (DCA). Findings: The internal cohort included 395 patients (median [IQR] age, 63 [54-71] years; 214 men [54.2%]) and the external cohort included 556 patients (median [IQR] age, 60 [52-68] years; 308 men [55.4%]). The Harrell's C-index of the OCT in the external validation cohort was greater than that of the MSK nomogram (0.805 (95% CI: 0.803-0.808) vs 0.788 (95% CI: 0.786-0.791), respectively). In the external validation cohort, the slope and intercept of the calibration curve of the main OCT were 1.041 and 0.038, respectively. In comparison, the slope and intercept of the calibration curve for the MSK nomogram was 0.681 and 0.032, respectively. The MSK nomogram overestimated the recurrence risk throughout the entire calibration curve. Of note, the Brier score was lower for the OCT compared to the MSK nomogram (0.147 vs 0.564, respectively), and the Hosmer-Lemeshow test was insignificant (P = 0.087) for the OCT model but significant (P < 0.001) for the MSK nomogram. Both results confirmed the superior discrimination and calibration of the OCT over the MSK nomogram. A decision curve analysis showed that the AI-based OCT model allowed for superior decision making compared to the MSK nomogram for both patients with 25-50% recurrence risk as well as those with >50% risk of recurrence. Interpretation: We present the first prognostic models of recurrence risk in GIST that demonstrate excellent discrimination, calibration, and clinical utility on external validation. Additional studies for further validation are warranted. With further validation, these tools could potentially improve patient counseling and selection for adjuvant therapy. Funding: The NCI SPORE in Soft Tissue Sarcoma and NCI Cancer Center Support Grants.

SELECTION OF CITATIONS
SEARCH DETAIL
...