Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613250

ABSTRACT

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Subject(s)
Amphibians , Conservation of Natural Resources , Genetics, Population , Mammals , Population Density , Animals , Amphibians/genetics , Amphibians/classification , Mammals/genetics , Mammals/classification , Gene Flow , Birds/genetics , Birds/classification , Humans , Inbreeding , Genetic Drift , Plants/genetics , Plants/classification , Human Activities
2.
Eur J Neurosci ; 50(9): 3416-3427, 2019 11.
Article in English | MEDLINE | ID: mdl-31350860

ABSTRACT

The priming effect of rewards is a boost in the vigor of reward seeking resulting from the previous receipt of a reward. Extensive work has been carried out on the priming effect of electrical brain stimulation, but much less research exists on the priming effect of natural rewards, such as food. While both reinforcement and motivation are linked with dopamine transmission in the brain, the priming effect of rewards does not appear to be dopamine-dependent. In the present study, an operant method was developed to measure the priming effect of food and then applied to investigate whether it is affected by dopamine receptor antagonism. Long-Evans rats were administered saline or one of the three doses (0.01, 0.05, 0.075 mg/kg) of the dopamine D1 receptor family antagonist, SCH23390, or the dopamine D2 receptor family antagonist, eticlopride. Although dopamine receptor antagonism affected pursuit of food, it did not eliminate the priming effect. These data suggest that despite the involvement of dopamine transmission in reinforcement and motivation, the priming effect of food does not depend on dopamine transmission.


Subject(s)
Benzazepines/pharmacology , Food , Repetition Priming/drug effects , Salicylamides/pharmacology , Animals , Conditioning, Operant/drug effects , Dopamine Antagonists/pharmacology , Male , Rats
3.
Sci Data ; 6(1): 14, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944329

ABSTRACT

Population genetic data from nuclear DNA has yet to be synthesized to allow broad scale comparisons of intraspecific diversity versus species diversity. The MacroPopGen database collates and geo-references vertebrate population genetic data across the Americas from 1,308 nuclear microsatellite DNA studies, 897 species, and 9,090 genetically distinct populations where genetic differentiation (FST) was measured. Caribbean populations were particularly distinguished from North, Central, and South American populations, in having higher differentiation (FST = 0.12 vs. 0.07-0.09) and lower mean numbers of alleles (MNA = 4.11 vs. 4.84-5.54). While mammalian populations had lower MNA (4.86) than anadromous fish, reptiles, amphibians, freshwater fish, and birds (5.34-7.81), mean heterozygosity was largely similar across groups (0.57-0.63). Mean FST was consistently lowest in anadromous fishes (0.06) and birds (0.05) relative to all other groups (0.09-0.11). Significant differences in Family/Genera variance among continental regions or taxonomic groups were also observed. MacroPopGen can be used in many future applications including latitudinal analyses, spatial analyses (e.g. central-margin), taxonomic comparisons, regional assessments of anthropogenic impacts on biodiversity, and conservation of wild populations.


Subject(s)
Databases, Genetic , Microsatellite Repeats , Vertebrates/genetics , Animals , Biodiversity , Caribbean Region , Central America , North America , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...