Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Sports Med ; 36(11): 872-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26140688

ABSTRACT

This study compared the O2 delivery (a central determinant of VO2) and muscle deoxygenation (reflecting a peripheral determinant of VO2) during intense continuous, long-interval, and short-interval exercise protocols. Twelve young men completed the 3 protocols with equal overall effort. Simultaneous and continuous recordings of central hemodynamics, muscle oxygenation/deoxygenation and VO2 were performed. Peak responses for stroke volume and peripheral resistance did not differ among protocols, whereas peak cardiac output and VO2 were higher in long-interval vs. continuous and short-interval protocols with inactive rest phases (p<0.05). The average responses for all central parameters were higher in continuous and long-interval vs. short-interval exercise (p<0.05); average VO2 and exercise-time above 80% VO2max were also higher in continuous and long-interval vs. short-interval protocol (p<0.05). Muscle de-oxygenation (↑Δdeoxyhemoglobin,↓Δoxyhemoglobin, ↓muscle O2-saturation), as well as the mismatch of O2 delivery and utilization (Δdeoxyhemoglobin/VO2) were remarkably alike among protocols. In conclusion, all 3 protocols resulted in a great activation of central and peripheral determinants of VO2. When performed with equal overall effort, the intense continuous and interval modalities reveal similarities in muscle O2-utilization response, but differences in central hemodynamic and VO2 responses. Intense continuous and long-interval protocols exert a more commanding role on the cardiovascular system and VO2 response compared to short-interval exercise with inactive rest phases.


Subject(s)
Exercise/physiology , Muscle, Skeletal/metabolism , Oxygen Consumption , Oxygen/metabolism , Hemodynamics , Hemoglobins/metabolism , Humans , Male , Oxyhemoglobins/metabolism , Physical Endurance/physiology , Pulmonary Ventilation , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL