Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(3): 1992-2004, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38221743

ABSTRACT

Solid polymer electrolytes (SPEs) have emerged as promising candidates for sodium-based batteries due to their cost-effectiveness and excellent flexibility. However, achieving high ionic conductivity and desirable mechanical properties in SPEs remains a challenge. In this study, we investigated an AB diblock copolymer, PS-PEA(BuImTFSI), as a potential SPE for sodium batteries. We explored binary and ternary electrolyte systems by combining the polymer with salt and [C3mpyr][FSI] ionic liquid (IL) and analyzed their thermal and electrochemical properties. Differential scanning calorimetry revealed phase separation in the polymer systems. The addition of salt exhibited a plasticizing effect localized to the polyionic liquid (PIL) phase, resulting in an increased ionic conductivity in the binary electrolytes. Introducing the IL further enhanced the plasticizing effect, elevating the ionic conductivity in the ternary system. Spectroscopic analysis, for the first time, revealed that the incorporation of NaFSI and IL influences the conformation of TFSI- and weakens the interaction between TFSI- and the polymer. This establishes correlations between anions and Na+, ultimately enhancing the diffusivity of Na ions. The electrochemical properties of an optimized SPE in Na/Na symmetrical cells were investigated, showcasing stable Na plating/stripping at high current densities up to 0.7 mA cm-2, maintaining its integrity at 70 °C. Furthermore, we evaluated the performance of a Na|NaFePO4 cell cycled at different rates (C/10 and C/5) and temperatures (50 and 70 °C), revealing remarkable high-capacity retention and Coulombic efficiency. This study highlights the potential of solvent-free diblock copolymer electrolytes for high-performance sodium-based energy storage systems, contributing to advanced electrolyte materials.

2.
J Am Chem Soc ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36779668

ABSTRACT

The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the Ti3C2Tx MXene benchmark system, we confirm the high sensitivity of the 13C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the 13C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and 13C NMR shift is further confirmed on the V2CTx, Mo2CTx, and Nb2CTx MXenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...