Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 21(1): 67, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509569

ABSTRACT

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Subject(s)
Influenza A Virus, H5N1 Subtype , Vaccines , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Epitopes, T-Lymphocyte/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Epitopes, B-Lymphocyte , Computational Biology/methods , Molecular Docking Simulation , Vaccines, Subunit/genetics
2.
Adv Biomed Res ; 10: 42, 2021.
Article in English | MEDLINE | ID: mdl-35071110

ABSTRACT

BACKGROUNDS: The prevalence of metabolic syndrome (MetS) is increasing in developing countries that affects the liver in a variety of ways. This study was designed to investigate the protective role of eugenol on liver damage caused by fructose-induced MetS. MATERIALS AND METHODS: Thirty male Wistar rats were randomly divided into five groups: 1: tap water (control), 2: fructose, 3: fructose + eugenol solvent, 4: fructose + eugenol 50 mg/kg, and 5: fructose + eugenol 100 mg/kg. At the end of the experiment, blood samples were taken for measurement fast blood glucose (FBG), serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT), low-density lipoprotein, high-density lipoprotein, cholesterol, and triglyceride. RESULTS: FBG significantly increased in Group 2 compared to Group 1 (P < 0.001); however, it significantly decreased in Groups 4 and 5 compared to Group 2 (P < 0.05). SGOT and SGPT levels significantly increased in Group 2 compared to the control group (P < 0.001). However, SGOT and SGPT levels significantly decreased in Groups 4 and 5. Malondialdehyde (MDA) and liver tissue damage score (LTDS) significantly increased in Group 2 compared with the control group (P < 0.01), whereas MDA and LTDS decreased in Groups 4 and 5 compared to Group 2 (P < 0.05). CONCLUSION: Eugenol may ameliorate liver damage in a rat model of fructose-induced MetS, and these protective effects may in part be mediated by improving antioxidant status and reducing oxidative stress and lipid peroxidation. It may also reduce hepatic inflammation and fat accumulation as well as fibrosis of liver cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...