Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 25(12): 4435-4438, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34227081

ABSTRACT

OBJECTIVE: We aimed at explaining the mechanism of therapeutic effect of Umbilical Cord Mesenchymal Stem Cells (UC-MSC) in subjects with COVID-19 Acute Respiratory Distress Syndrome (ARDS). Patients with COVID-19 ARDS present with a hyperinflammatory response characterized by high levels of circulating pro-inflammatory mediators, including tumor necrosis factor α and ß (TNFα and TNFß). Inflammatory functions of these TNFs can be inhibited by soluble TNF Receptor 2 (sTNFR2). In patients with COVID-19 ARDS, UC-MSC appear to impart a robust anti-inflammatory effect, and treatment is associated with remarkable clinical improvements. We investigated the levels of TNFα, TNFß and sTNFR2 in blood plasma samples collected from subjects with COVID-19 ARDS enrolled in our trial of UC-MSC treatment. PATIENTS AND METHODS: We analyzed plasma samples from subjects with COVID-19 ARDS (n=24) enrolled in a Phase 1/2a randomized controlled trial of UC-MSC treatment. Plasma samples were obtained at Day 0 (baseline, before UC-MSC or control infusion), and Day 6 post infusion. Plasma concentrations of sTNFR2, TNFα, and TNFß were evaluated using a quantitative multiplex protein array. RESULTS: Our data indicate that at Day 6 after infusion, UC-MSC recipients develop significantly increased levels of plasma sTNFR2 and significantly decreased levels of TNFα and TNFß, compared to controls. CONCLUSIONS: These observations suggest that sTNFR2 plays a mechanistic role in mediating UC-MSC effect on TNFα and TNFß plasma levels, determining a decrease in inflammation in COVID-19 ARDS.


Subject(s)
COVID-19/blood , Lymphotoxin-alpha/blood , Mesenchymal Stem Cell Transplantation/methods , Receptors, Tumor Necrosis Factor, Type II/blood , Respiratory Distress Syndrome/blood , Tumor Necrosis Factor-alpha/blood , Umbilical Cord/transplantation , Biomarkers/blood , COVID-19/therapy , Double-Blind Method , Humans , Respiratory Distress Syndrome/therapy , Umbilical Cord/cytology
2.
Eur Cell Mater ; 39: 227-248, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32484571

ABSTRACT

Inflammation represents an important factor leading to metabolic imbalance within the intervertebral disc (IVD), conducive to degenerative changes. Therefore, a thorough knowledge of the IVD and endplate (EP) cell behaviour in such pathological environments is essential when designing regenerative therapeutic strategies. The present study aimed at assessing the molecular response of the IVD constitutive nucleus pulposus (NPCs)-, annulus fibrosus (AFCs)- and endplate (EPCs)-derived cells to interleukin (IL)-1ß treatment, through large-scale, high-throughput microarray and protein analysis, identifying the differentially expressed genes and released proteins. Overall, the inflammatory stimulus downregulated stemness genes while upregulating pro-inflammatory, pro-angiogenic and catabolic genes, including matrix metalloproteases, which were not balanced by a concomitant upregulation of their inhibitors. Upregulation of anti-inflammatory and anabolic tumour necrosis factor inducible gene 6 protein (TNFAIP6), of IL-1 receptor antagonist (IL-1Ra) (at gene and protein levels) and of trophic insulin-like growth factor 1 (IGF1) was also observed in all cell types; IGF1 particularly in AFCs. An overall inhibitory effect of tumour necrosis factor alpha (TNFα) signal was observed in all cell types; however, EPCs showed the strongest anti-inflammatory behaviour. AFCs and EPCs shared the ability to limit the activation of the signalling mediated by specific chemokines. AFCs showed a slightly senescent attitude, with a downregulation of genes related to DNA repair or pro-mitosis. Results allowed for the identification of specific molecular targets in IVD and EP cells that respond to an inflammatory environment. Such targets can be either silenced (when pathological targets) or stimulated to counteract the inflammation.


Subject(s)
Inflammation/pathology , Interleukin-1beta/pharmacology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/pathology , Motor Endplate/pathology , Cluster Analysis , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Intervertebral Disc/drug effects , Intervertebral Disc Degeneration/genetics , Male , Matrix Metalloproteinases/metabolism , Middle Aged , Motor Endplate/drug effects , Stem Cells/drug effects , Stem Cells/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism
3.
Arthritis Rheum ; 62(7): 1944-54, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20222109

ABSTRACT

OBJECTIVE: To test the hypothesis that CD45(low)CD271+ bone marrow multipotential stromal cells (MSCs) are abundant in the trabecular bone niche and to explore their functional "fitness" in health and osteoarthritis (OA). METHODS: Following enzymatic extraction, MSC release was evaluated using colony-forming unit-fibroblast (CFU-F) and colony-forming unit-osteoblast assays, flow cytometry, and confocal microscopy. CD45(low)CD271+ cells isolated by fluorescence-activated cell sorting were enumerated and expanded under standard and clonal conditions. Their proliferative and osteogenic potencies were assessed in relation to donor age and compared with those of aspirated CD45(low)CD271+ cells. In vitro and in vivo MSC "aging" was measured using quantitative polymerase chain reaction-based telomere length analysis, and standard differentiation assays were utilized to demonstrate multipotentiality. RESULTS: Cellular isolates from trabecular bone cavities contained approximately 65-fold more CD45(low)CD271+ cells compared with aspirates (P < 0.0001) (median 1.89% [n = 39] and 0.029% [n = 46], respectively), concordant with increased CFU-F release. Aspirated and enzymatically released CD45(low)CD271+ cells had identical MSC phenotypes (approximately 100% CD73+CD105+CD13+, approximately 50-60% CD146+CD106+CD166+) and contained large proportions of highly clonogenic multipotential cells. In vitro osteogenic potency of freshly isolated CD45(low)CD271+ cells was comparable with, and often above, that of early-passage MSCs (8-14%). Their frequency and in vivo telomere status in OA bone were similar to those in bone from age-matched controls. CONCLUSION: Our findings show that CD45(low)CD271+ MSCs are abundant in the trabecular bone cavity and indistinguishable from aspirated CD45(low)CD271+ MSCs. In OA they display aging-related loss of proliferation but no gross osteogenic abnormality. These findings offer new opportunities for direct study of MSCs in musculoskeletal diseases without the requirement for culture expansion. They are also relevant for direct therapeutic exploitation of prospectively isolated, minimally cultured MSCs in trauma and OA.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Osteoarthritis/pathology , Stromal Cells/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow Cells/metabolism , Bone Regeneration , Cell Proliferation , Cell Separation , Cells, Cultured , Child , Child, Preschool , Flow Cytometry , Humans , Leukocyte Common Antigens/metabolism , Mesenchymal Stem Cells/metabolism , Middle Aged , Multipotent Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Osteoarthritis/metabolism , Receptors, Nerve Growth Factor/metabolism , Stem Cells , Stromal Cells/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...