Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 6715, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25823686

ABSTRACT

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrimidines/pharmacology , Amines/pharmacology , Animals , Drug Evaluation, Preclinical , Drug Resistance, Microbial , Guinea Pigs , Half-Life , Rats
2.
J Med Chem ; 57(13): 5702-13, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24914738

ABSTRACT

Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (Pf) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure-activity relationship studies followed by pharmacokinetics optimization resulted in the identification of 23 as an attractive lead with good oral bioavailability. Compound 23 was found to be efficacious (ED90 of 28.6 mg·kg(-1)) in the humanized P. falciparum mouse model of malaria (Pf/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of Pf strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class.


Subject(s)
Antimalarials/pharmacology , Benzimidazoles/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Mice , Small Molecule Libraries , Structure-Activity Relationship
3.
J Med Chem ; 57(12): 5419-34, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24871036

ABSTRACT

4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-ß-d-ribose 2'-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure-activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC50 < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb.


Subject(s)
Amides/chemistry , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Piperidines/chemistry , Quinolones/chemistry , Alcohol Oxidoreductases , Amides/pharmacokinetics , Amides/pharmacology , Animals , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/pharmacology , Catalytic Domain , Cell Line, Tumor , Drug Resistance, Bacterial , Genome, Bacterial , Humans , Kinetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Binding , Quinolones/pharmacokinetics , Quinolones/pharmacology , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24405701

ABSTRACT

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Subject(s)
Mycobacterium tuberculosis/drug effects , Pyridones/chemical synthesis , Thiazoles/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Models, Animal , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Urea/chemistry
5.
J Med Chem ; 56(21): 8834-48, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24088190

ABSTRACT

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 µM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy , Urea/pharmacology , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Pyridines/administration & dosage , Pyridines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/administration & dosage , Topoisomerase II Inhibitors/chemistry , Urea/analogs & derivatives , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...