Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
2.
Subst Use Misuse ; 58(5): 735-738, 2023.
Article in English | MEDLINE | ID: mdl-36866964

ABSTRACT

Background: Deaths from drug overdose have reached a crisis level, with more than 100,000 reported from April 2020 to April 2021. Novel approaches to address it are urgently needed. Objectives: National Institute on Drug Abuse (NIDA) is leading novel comprehensive efforts to develop safe and effective products that address the needs of the citizens affected by SUD. NIDA aims to support research and development of medical devices intended to monitor, diagnose, or treat substance use disorders. Results: NIDA participates in Blueprint MedTech program is part of the large NIH Blueprint for Neurological Research Initiative. It supports the research and development of new medical devices through product optimization, pre-clinical testing, and human subject studies, including clinical trials. The program is structured in two main components - Blueprint MedTech Incubator and Blueprint MedTech Translator. It offers free to the researcher services that are typically unavailable in academic environment - business expertise facilities and staffing to successfully develop minimum viable devices, pre-clinical bench testing, clinical studies, planning and executing in manufacturing, as well as regulatory expertise. Conclusions: Through Blueprint MedTech, NIDA provides innovators with expanded resources to ensure the success of the research.


Subject(s)
Drug Overdose , Substance-Related Disorders , United States , Humans , National Institute on Drug Abuse (U.S.) , Substance-Related Disorders/therapy , Substance-Related Disorders/diagnosis , Research
5.
Eur Neuropsychopharmacol ; 25(10): 1803-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26073278

ABSTRACT

Current limitations impeding on data reproducibility are often poor statistical design, underpowered studies, lack of robust data, lack of methodological detail, biased reporting and lack of open data sharing, coupled with wrong research incentives. To improve data reproducibility, robustness and quality for brain disease research, a Preclinical Data Forum Network was formed under the umbrella of the European College of Neuropsychopharmacology (ECNP). The goal of this network, members of which met for the first time in October 2014, is to establish a forum to collaborate in precompetitive space, to exchange and develop best practices, and to bring together the members from academia, pharmaceutical industry, publishers, journal editors, funding organizations, public/private partnerships and non-profit advocacy organizations. To address the most pertinent issues identified by the Network, it was decided to establish a data sharing platform that allows open exchange of information in the area of preclinical neuroscience and to develop an educational scientific program. It is also planned to reach out to other organizations to align initiatives to enhance efficiency, and to initiate activities to improve the clinical relevance of preclinical data. Those Network activities should contribute to scientific rigor and lead to robust and relevant translational data. Here we provide a synopsis of the proceedings from the inaugural meeting.


Subject(s)
Biomedical Research/methods , Drug Evaluation, Preclinical , Neurosciences , Psychopharmacology , Animals , Congresses as Topic , Drug Evaluation, Preclinical/methods , Europe , Information Dissemination/methods , Neurosciences/methods , Periodicals as Topic , Practice Guidelines as Topic , Psychopharmacology/methods , Reproducibility of Results
7.
J Trauma ; 65(3): 554-65, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18784568

ABSTRACT

BACKGROUND: Pharmacological histone deacetylase (HDAC) inhibitors, such as known anticonvulsant valproic acid (VPA), demonstrate cytoprotective effects and increase acetylation of nuclear histones, promoting transcriptional activation of deregulated genes. Therefore, we examined protective effects of VPA administration in lethal hemorrhage and analyzed the patterns of hepatic histone acetylation. METHODS: Male Wistar Kyoto rats were pretreated with VPA (n = 10) and 2-methyl-2-pentenoic acid (2M2P), structural VPA analog with limited HDAC inhibiting activity (2M2P; n = 8), at 300 mg/kg/dose, administered subcutaneously, 24 hour and immediately before lethal, if untreated, hemorrhage was induced by removing the 60% of total blood volume. Both drugs were dissolved in normal saline (NS) and rats pretreated with corresponding volume of NS served as control group (n = 8). Time to death, the degree of histone acetylation in liver, HDAC activity and markers of cytotoxicity (alpha-glutathione S-transferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and lactate), and apoptosis were analyzed. RESULTS: VPA-pretreated animals demonstrated five-fold increase in survival duration. At 12 hours posthemorrhage, 70% (VPA) and 12% (2M2P) pretreated rats were alive versus 0% in NS group. Hyperacetylation of histones H2A, H3, and H4 indicated the presence of active genes and correlated with survival (VPA > 2M2P > NS). Hemorrhage-induced increases in lactate, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were alleviated by VPA. Moreover, alpha-glutathione S-transferase release, indicative of liver damage, was completely abolished. CONCLUSION: VPA offers considerable protection in severe hemorrhagic shock. The role of HDAC inhibition is suggested in mediating prosurvival actions of VPA.


Subject(s)
Enzyme Inhibitors/therapeutic use , Histone Deacetylase Inhibitors , Liver/drug effects , Shock, Hemorrhagic/drug therapy , Valproic Acid/therapeutic use , Acetylation/drug effects , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Histones/metabolism , Liver/metabolism , Liver/pathology , Male , Rats , Rats, Inbred WKY , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/metabolism , Valproic Acid/pharmacology
8.
Resuscitation ; 76(2): 299-310, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17822827

ABSTRACT

BACKGROUND: Chromatin remodeling through histone acetylation is a key control mechanism in gene transcription. We have shown previously that fluid resuscitation in rodents is coupled with highly structured post-translational modifications of cardiac histones. The current experiment was performed to validate this concept in a clinically relevant large animal model of hemorrhage and resuscitation, and to correlate the changes in histone acetylation with altered expression of immediate-early response genes. STUDY DESIGN: Yorkshire swine (n=49, 7/group, weight=40-58kg) were subjected to combined uncontrolled and controlled hemorrhage (40% of estimated blood volume) and randomly assigned to the following resuscitation groups: (1) 0.9% saline (NS), (2) racemic lactated Ringer's (dl-LR), (3) l-isomer lactated Ringer's (l-LR), (4) Ketone Ringer's (KR), (5) 6% hetastarch in saline (Hespan). KR contained an equimolar substitution of lactate with beta-hydroxybutyrate. No hemorrhage (NH) and no resuscitation (NR) groups were included as controls. Cardiac protein was used in Western blotting to analyze total protein acetylation and histone acetylation specifically. Lysine residue-specific acetylation of histone subunits H3 and H4 was further evaluated. In addition, Chromatin Immunoprecipitation (ChIP) technique was used to separate the DNA bound to acetylated histones (H3 and H4 subunits), followed by measurement of genes that are altered by hemorrhage/resuscitation, including immediate-early response genes (c-fos and c-myc), and heat shock protein (HSP) 70. RESULTS: The type of fluid used for resuscitation influenced the patterns of cardiac histone acetylation. Resuscitation with dl-LR and KR induced hyperacetylation on H3K9. KR resuscitation was also associated with increased acetylation on H3K14 and H4K5, and hypoacetylation on H3K18. The expression of genes was also fluid specific, with the largest number of changes following KR resuscitation (increased c-fos and c-myc, HSP 70 linked with H3; and increased c-myc linked with H4). Among the histone subunits studied, altered H3 acetylations were associated with the majority of changes in immediate-early gene expression. CONCLUSIONS: Acetylation status of cardiac histones, affected by hemorrhage, is further modulated by resuscitation producing a fluid-specific code that is preserved in different species. Resuscitation with KR causes histone acetylation at the largest number of lysine sites (predominately H3 subunit), and has the most pronounced impact on the transcriptional regulation of selected (immediate-early response) genes.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Histones/metabolism , Resuscitation/methods , Shock, Hemorrhagic/therapy , Acetylation , Animals , Blotting, Western , Cell Adhesion Molecules, Neuronal/genetics , Chromatin Immunoprecipitation , Contactins , Disease Models, Animal , Histones/genetics , Shock, Hemorrhagic/genetics , Shock, Hemorrhagic/metabolism , Swine , Transcription, Genetic , Zebrafish Proteins
9.
Surgery ; 141(6): 784-94, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17560255

ABSTRACT

BACKGROUND: DNA transcription is regulated in part by acetylation of nuclear histones, controlled by 2 groups of enzymes: histone deacetylases (HDAC) and histone acetyl transferases (HAT). We have shown previously that hemorrhage and resuscitation are associated with HDAC/HAT imbalance, which influences the acetylation status of cardiac histones. The goals of this study were to determine whether: (1) resuscitation after hemorrhage affects histone acetylation in a fluid- and organ-specific fashion; and (2) administration of HDAC inhibitors influences histone acetylation and subsequent gene expression. METHODS: In the first experiment, rats (n = 6/group) were subjected to volume-controlled hemorrhage and resuscitated with: (1) racemic lactated Ringer's (DL-LR); (2) L-lactated Ringer's (L-LR); (3) 7.5% hypertonic saline (HTS); (4) ketone Ringer's (KR); or (5) pyruvate Ringer's (PR). Control groups included: (6) no hemorrhage (Sham); and (7) hemorrhage with no resuscitation (NR). In the second experiment (n = 5/group), 3 HDAC inhibitors, valproic acid (VPA), trichostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA), were added to normal saline and used as fluid for resuscitation. At the end of resuscitation, lung and liver tissues were subjected to subcellular protein fractionation and Western blotting to analyze histone acetylation. In addition, cDNA microarrays and RT-PCR were used to measure expression of selected genes. RESULTS: Hemorrhage did not change the level of histone acetylation in lungs, whereas resuscitation predominantly hyperacetylated histones. An analysis of histone acetylation on 10 lysine sites showed that L-LR, HTS, and KR resuscitation caused the largest number of changes (7, 6, and 6 respectively). SAHA hyperacetylated 7 sites in liver and affected expression of 57 genes (44 up, 13 down). CONCLUSIONS: Resuscitation with various fluids, as well as infusion of pharmacologic HDAC inhibitors affects histone acetylation in a fluid- and organ-specific fashion, even when administered post-insult for a limited period of time. Uniquely affected genes are associated with metabolism, cellular growth, proliferation, differentiation, transformation, and cellular signaling.


Subject(s)
Enzyme Inhibitors/therapeutic use , Histone Deacetylase Inhibitors , Resuscitation/methods , Shock, Hemorrhagic/enzymology , Shock, Hemorrhagic/therapy , Acetylation/drug effects , Animals , Gene Expression/drug effects , Histone Acetyltransferases/metabolism , Histones/metabolism , Hydroxamic Acids/therapeutic use , Liver/enzymology , Lung/enzymology , Male , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/genetics , Shock, Hemorrhagic/metabolism , Valproic Acid/therapeutic use , Vorinostat
10.
Resuscitation ; 74(3): 526-37, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17386967

ABSTRACT

UNLABELLED: It has been shown that the inflammatory response and cellular damage after hemorrhagic shock are influenced by resuscitation strategies. Toll-like receptors (TLRs) play an important role in signal transduction in inflammatory conditions. However, alterations in TLR expression following hemorrhagic shock and resuscitation have not been well documented. This study was conducted to measure the impact of different resuscitation strategies on TLR expression and downstream signaling in key organs. METHODS: Sprague Dawley rats (n=38) were subjected to a severe volume-controlled hemorrhage protocol. After 75 min of shock, they were resuscitated over 45 min as follows: (1) lactated Ringer's (LR, 81 ml/kg), (2) ketone Ringer's (KR, 81 ml/kg), (3) 7.5% hypertonic saline (HTS, 9.7 ml/kg), (4) 6% hetastarch (HEX, 27 ml/kg), (5) pyruvate Ringer's (PR, 81 ml/kg). Sham hemorrhage (NH) and no resuscitation (NR) groups served as controls. The KR and PR solutions were identical to LR except for equimolar substitution of racemic lactate with beta hydroxybutyrate and sodium pyruvate, respectively. At the end of resuscitation, the expression of TLRs (types 1-10), and cytokines (IL-10, IL-1beta and TNF-alpha) were measured in the lung and spleen using RT-PCR. Levels of phosphorylated and total IkB-alpha and NF-kappaB were detected by Western blotting. The systemic and lung protein levels of TNF-alpha were measured using ELISA and immunohistochemistry. RESULTS: Expression of TLRs in the lung was affected more than in the spleen by hemorrhagic shock and resuscitation. In the lung, hemorrhage increased TLR-2, -3 and -6 (but not TLR-4) mRNA expression, with an up-regulation of the ratio of phosphor-NF-kappaBp65 and total NF-kappaBp65, NF-kappaBp65 activation, and enhanced systemic and tissue TNF-alpha protein levels. Post-resuscitation, TLR mRNA profile and subsequent downstream proteins in the lung and spleen were affected by the choice of resuscitation strategy. CONCLUSIONS: Hemorrhagic shock activates TLR signaling in lung, but not the spleen, probably through an up-regulation of TLR gene expression, and activation of NF-kappaB pathway. Resuscitation modulates this response in a fluid- and tissue-specific fashion.


Subject(s)
Resuscitation/methods , Shock, Hemorrhagic/therapy , Toll-Like Receptors/biosynthesis , Animals , Biomarkers/metabolism , Blotting, Western , Cytokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression , Immunohistochemistry , Lung/metabolism , Male , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sepsis , Shock, Hemorrhagic/metabolism , Spleen/metabolism , Toll-Like Receptors/genetics , Transcription Factor RelA/biosynthesis
11.
J Pharmacol Exp Ther ; 321(3): 1208-25, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17325229

ABSTRACT

Bicifadine (1-p-tolyl-3-azabicyclo[3.1.0]hexane) inhibits monoamine neurotransmitter uptake by recombinant human transporters in vitro with a relative potency of norepinephrine > serotonin > dopamine (approximately 1:2:17). This in vitro profile is supported by microdialysis studies in freely moving rats, where bicifadine (20 mg/kg i.p.) increased extrasynaptic norepinephrine and serotonin levels in the prefrontal cortex, norepinephrine levels in the locus coeruleus, and dopamine levels in the striatum. Orally administered bicifadine is an effective antinociceptive in several models of acute, persistent, and chronic pain. Bicifadine potently suppressed pain responses in both the Randall-Selitto and kaolin models of acute inflammatory pain and in the phenyl-p-quinone-induced and colonic distension models of persistent visceral pain. Unlike many transport inhibitors, bicifadine was potent and completely efficacious in both phases of the formalin test in both rats and mice. Bicifadine also normalized the nociceptive threshold in the complete Freund's adjuvant model of persistent inflammatory pain and suppressed mechanical and thermal hyperalgesia and mechanical allodynia in the spinal nerve ligation model of chronic neuropathic pain. Mechanical hyperalgesia was also reduced by bicifadine in the streptozotocin model of neuropathic pain. Administration of the D(2) receptor antagonist (-)-sulpiride reduced the effects of bicifadine in the mechanical hyperalgesia assessment in rats with spinal nerve ligations. These results indicate that bicifadine is a functional triple reuptake inhibitor with antinociceptive and antiallodynic activity in acute, persistent, and chronic pain models, with activation of dopaminergic pathways contributing to its antihyperalgesic actions.


Subject(s)
Analgesics/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Pain/drug therapy , Acute Disease , Analgesics/metabolism , Animals , Brain/drug effects , Brain/metabolism , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Chronic Disease , Desipramine/pharmacology , Disease Models, Animal , Dopamine/metabolism , Dose-Response Relationship, Drug , Humans , Male , Mice , Microdialysis , Motor Activity/drug effects , Neurotransmitter Transport Proteins/antagonists & inhibitors , Neurotransmitter Transport Proteins/metabolism , Norepinephrine/metabolism , Pain/metabolism , Pain/physiopathology , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reaction Time/drug effects , Receptors, Neurotransmitter/antagonists & inhibitors , Receptors, Neurotransmitter/metabolism , Serotonin/metabolism
13.
Shock ; 25(4): 395-401, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16670643

ABSTRACT

Pharmacological inhibitors of histone deacetylases (HDAC) demonstrate cytoprotective effects both in vitro and in vivo. In this study, we investigated whether valproic acid (VPA), a known mood stabilizer and anticonvulsant with HDAC-inhibiting activity, improves survival following otherwise lethal hemorrhage in rats. We found that preinsult injection of VPA (300 mg/kg, twice) prolonged the survival of severely hypotensive animals up to 5 times. VPA treatment increased the acetylation of nonhistone and histone proteins in the rat heart. The pattern of modifications of individual histones revealed hyperacetylation of histones H2A, H3, and H4, indicating the presence of active genes. Expression of HSP70 and superoxide dismutase, implicated in the modulation of vitality, was increased by VPA. Our results reveal that VPA offers considerable protection in the hemorrhagic shock model and suggest a role for HDAC inhibition in mediating VPA actions.


Subject(s)
Heart/drug effects , Hemorrhage/drug therapy , Histones/metabolism , Valproic Acid/pharmacology , Acetylation/drug effects , Animals , Disease Models, Animal , Hemorrhage/mortality , Male , Rats , Rats, Inbred WKY
14.
J Trauma ; 60(4): 701-23; discussion 723-4, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16612289

ABSTRACT

BACKGROUND: Although transcriptional profiling is a well-established technique, its application to systematic studying of various biological phenomena is still limited because of problems with high-volume data analysis and interpretation. This research project's objective was to create a comprehensive summary of changes in gene expression after hemorrhagic shock (HS), reliant and impartial of multiple variables, such as resuscitation treatments, organ analyzed, and time after impact. METHODS: Rat model of severe (40% total blood loss) HS was employed. Hemorrhagic shock was treated with 6 different resuscitation strategies: (1) racemic lactated Ringer's (DL-LR); (2) L-lactated Ringer's (L-LR); (3) ketone Ringer's (KR); (4) pyruvate Ringer's (PR); (5) 6% hetastarch (Hex); (6) 7.5% hypertonic saline (HTS). Nonresuscitated and nonhemorrhaged rats served as controls. Ketone and pyruvate Ringer solutions were identical to the lactated Ringer's solution except for equimolar substitution of lactate with beta-hydroxybutyrate and sodium pyruvate, respectively. Total RNA from liver, lung, and spleen was isolated immediately (0 hour) and 24 hour postresuscitation. Each organ, time point and treatment was profiled using individual cDNA array (1,200 genes), to produce 183 separate data files. Methods of analysis included one-way and unbalanced factorial ANOVA, Sokal-Michener average linkage clustering and contextual mapping. RESULTS: : Unresuscitated HS produced the highest number (56) of upregulated expressions in spleen and lungs. HEX and HTS affected mostly pulmonary genes (22 and 9). Fourteen genes changed in response to combination of all three factors: treatment, organ, and time. Eighteen genes were identified as treatment-specific. Fifteen genes adjusted expression 24 hour post-treatment. The largest number of genes with altered expression (168) responded differently in all three organs. In this study 15 gene clusters were pinpointed. Contextual mapping identified novel and confirmed known pathways contributing to hemorrhage/resuscitation. CONCLUSIONS: We have reliably identified genes and pathways that are affected by HS and are responsive to resuscitation. Gene expression in various organs is affected differentially by HS, which can be further modulated by the choice of resuscitation strategy.


Subject(s)
Gene Expression Profiling/methods , Isotonic Solutions/therapeutic use , Oligonucleotide Array Sequence Analysis/methods , Resuscitation/methods , Shock, Hemorrhagic/therapy , Analysis of Variance , Animals , Liver/drug effects , Liver/enzymology , Lung/drug effects , Male , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Ringer's Solution , Shock, Hemorrhagic/genetics , Spleen/drug effects
15.
Surgery ; 139(3): 365-76, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16546502

ABSTRACT

BACKGROUND: DNA transcription is regulated, in part, by acetylation of nuclear histones that are controlled by 2 groups of enzymes: histone deacetylases (HDAC) and histone acetyl transferases (HAT). Whether an imbalance in HDAC/HAT system plays a role in hemorrhage/resuscitation is unknown. The goals of this study were to determine whether hemorrhage results in deacetylation of cardiac histones and whether this can be corrected through the application of different resuscitation strategies or specific HDAC inhibitors. METHODS: In the first experiment, rats (n = 6 per group) were subjected to volume-controlled hemorrhage and resuscitated with racemic lactated Ringer's solution, L-lactated Ringer's solution, 7.5% hypertonic saline solution, ketone Ringer's solution, and pyruvate Ringer's solution. Control groups included no hemorrhage (sham) and hemorrhage with no resuscitation. In the second experiment (n = 5 per group), 3 HDAC inhibitors (valproic acid, trichostatin A, and suberoylanilide hydroxamic acid) were added to saline solution resuscitation. Heart tissue was collected at the end of resuscitation. Isolated subcellular protein fractions were used in Western blotting to analyze the patterns of total protein acetylation and histone acetylation specifically. HDAC and HAT activity was measured in tissue extracts. RESULTS: Hemorrhage led to partial histone deacetylation. Resuscitation resulted in protein hyperacetylation in nuclear fractions only. A detailed analysis of histones (on 10 acetylation sites) revealed that ketone Ringer's solution hyperacetylated histones H2B, H3, and H4. The addition of suberoylanilide hydroxamic acid hyperacetylated histones more effectively than other resuscitation strategies, presumably by direct inhibition of HDAC activity. CONCLUSION: Hemorrhage/resuscitation is associated with HDAC/HAT activity misbalance, and the acetylation status of cardiac histones is influenced by the choice of resuscitation strategy. Shock-induced changes can be reversed through the infusion of pharmacologic HDAC inhibitor, even when it is administered after the insult for a limited period of time.


Subject(s)
Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Resuscitation , Shock, Hemorrhagic/physiopathology , Acetylation , Animals , Blotting, Western , Gene Expression Regulation , Male , Rats , Rats, Sprague-Dawley
16.
J Trauma ; 60(1): 52-63, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16456436

ABSTRACT

BACKGROUND: Cytotoxic properties of racemic (D-,L-isomers) lactated Ringer's solution detected in vitro and in small animal experiments, have not been confirmed in large animal models. Our hypothesis was that in a clinically relevant large animal model of hemorrhage, resuscitation with racemic lactated Ringer's solution would induce cellular apoptosis, which can be attenuated by elimination of d-lactate. METHODS: Yorkshire swine (n = 49, weight 40-58 kg) were subjected to uncontrolled (iliac arterial and venous injuries) and controlled hemorrhage, totaling 40% of estimated blood volume. They were randomized (n = 7/group) to control groups, which consisted of (1) no hemorrhage (NH), (2) no resuscitation (NR), or resuscitation groups, which consisted of (3) 0.9% saline (NS), (4) racemic lactated Ringer's (DL-LR), (5) L-isomer lactated Ringer's (L-LR), (6) Ketone Ringer's (KR), (7) 6% hetastarch in 0.9% saline (Hespan). KR was identical to LR except for equimolar substitution of lactate with beta-hydroxybutyrate. Resuscitation was performed in three phases, simulating (1) prehospital, (2) operative, (3) postoperative/recovery periods. Arterial blood gasses, circulating cytokines (TNF-alpha, IL-1, -6, -10), and markers of organ injury were serially measured. Metabolic activity of brain, and liver, was measured with microdialysis. Four hours postinjury, organs were harvested for Western blotting, ELISA, TUNEL assay, and immunohistochemistry. RESULTS: All resuscitation strategies restored blood pressure, but clearance of lactic acidosis was impeded following DL-LR resuscitation. Metabolic activity decreased during shock and improved with resuscitation, without any significant inter-group differences. Levels of cytokines in circulation were similar, but tissue levels of TNF in liver and lung increased six- and threefolds (p < 0.05) in NR group. In liver, all resuscitation strategies significantly decreased TNF levels compared with the NR group, but in the lung resuscitation with lactated Ringer (DL and L isomers) failed to decrease tissue TNF levels. DL-LR resuscitation also increased apoptosis (p < 0.05) in liver and lung, which was not seen after resuscitation with other solutions. CONCLUSIONS: In this large animal model of hemorrhagic shock, resuscitation with conventional (racemic) LR solution increased apoptotic cell death in liver and lung. This effect can be prevented by simple elimination of D-lactate from the Ringer's solution.


Subject(s)
Apoptosis/drug effects , Isotonic Solutions/chemistry , Isotonic Solutions/pharmacology , Liver/drug effects , Lung/drug effects , Shock, Hemorrhagic/pathology , Animals , Disease Models, Animal , Humans , Interleukin-1/blood , Interleukin-10/blood , Isomerism , Isotonic Solutions/therapeutic use , Liver/metabolism , Liver/pathology , Lung/metabolism , Lung/pathology , Resuscitation , Ringer's Lactate , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/metabolism , Swine , Tumor Necrosis Factor-alpha/metabolism
17.
J Am Coll Surg ; 202(1): 25-35, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16377494

ABSTRACT

BACKGROUND: Resuscitation with racemic lactated Ringer's solution induces cellular apoptosis. This study was conducted to determine if the elimination of D-lactate isomer would attenuate apoptosis in the liver, and to investigate the possible mechanisms. STUDY DESIGN: Sprague Dawley rats (n=30, 5 per group) were subjected to modified volume-controlled hemorrhage and randomized to the following groups: no hemorrhage (sham); no resuscitation (NR); resuscitation with racemic lactated Ringer's (DL-LR); L-isomer LR (L-LR); ketone (beta-hydroxybuturate) Ringer's (KR); or pyruvate Ringer's (PR). Animals were sacrificed 2 hours later and expressions of proapoptotic proteins (BAD), antiapoptotic (bcl-2) proteins, and poly-ADP ribose polymerase (PARP) cleavage in liver were analyzed by Western blotting. Contribution of the phosphatidylinositol 3-kinase/serine/threonine kinase (PI3k/Akt) pathway was assessed by measuring total and phosphorylated PI3K, Akt, BAD, and endothelial nitric oxide synthase (eNOS) proteins. The terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used to detect the apoptotic cells. Liver ATP levels were measured using a luciferase reaction assay. RESULTS: Hemorrhage significantly decreased the hepatic ATP level and resuscitation improved it, but it returned to normal only in the L-isomer lactated Ringer's and ketone Ringer's groups. Expression of proapoptotic proteins was significantly lower in the pyruvate Ringer's and ketone Ringer's groups; L-isomer lactated Ringer's and pyruvate Ringer's resuscitation significantly increased bcl-2 expression. Poly-ADP ribose polymerase fragmentation and total number of apoptotic cells were significantly increased in the racemic lactated Ringer's group. There was no significant induction of Akt activity or changes in phosphorylated BAD, Akt, or eNOS levels. CONCLUSIONS: Resuscitation with racemic lactated Ringer's induces hepatic apoptosis, which is decreased if the D-isomer of lactate is eliminated. Apoptosis is reduced even more when lactate is substituted with beta-hydroxybutyrate or pyruvate. The beneficial effects are not through improvements in the energy status or activation of the PI3K/Akt pathway.


Subject(s)
Apoptosis/drug effects , Isotonic Solutions/pharmacology , Liver/drug effects , Liver/pathology , Resuscitation , Shock, Hemorrhagic/pathology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Disease Models, Animal , Isotonic Solutions/chemistry , Isotonic Solutions/therapeutic use , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Ringer's Solution , Shock, Hemorrhagic/drug therapy , Shock, Hemorrhagic/metabolism , Stereoisomerism
18.
J Trauma ; 59(5): 1191-202; discussion 1202, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16385299

ABSTRACT

BACKGROUND: Monocarboxylate (MC)-supplemented resuscitation has been shown to attenuate cellular injury after hemorrhagic shock. However, little is known about its effect on the central nervous system. The brain can use MCs such as lactate, pyruvate, and beta-hydroxybutyrate as energy substrates. The transit of MCs into the central nervous system is facilitated by the monocarboxylate transporters (MCTs), and their blockage can exacerbate neuronal damage. We examined the expression of MCT1 and markers specific for activation of astroglia and microglia in the brains of rats subjected to hemorrhagic shock and resuscitation. The hypothesis was that resuscitation with MC-based fluids would be accompanied by MCT1 up-regulation and glial response. METHODS: Rats (n = 30) were subjected to volume-controlled hemorrhage. Test groups included: sham, no resuscitation, resuscitation with normal saline, resuscitation with racemic lactated Ringer's solution, resuscitation with pyruvate Ringer's solution, and resuscitation with beta-hydroxybutyrate-containing ketone Ringer's solution. Plasma levels of MC were measured serially. The brains were investigated using GFAP, CD11b, CD43, MCT1, and GLUT1 immunohistochemistry. RESULTS: Rats resuscitated with MC-containing fluids had increased levels of MCT1 in brain endothelial cells and neuropil compared with sham rats. Enhanced staining was localized to the choroid plexus, astrocytic end feet, and white matter structures. None of the resuscitation treatment induced astrocytic hyperplasia, and pyruvate Ringer's solution and ketone Ringer's solution resuscitation led to hypertrophy of astrocytes. CONCLUSION: In hemorrhagic shock, resuscitation with MC-based fluids increased brain MCT1 level and led to activation of astrocytes. Enhanced MC trafficking could be an essential route for energy supply to neurons under adverse circulatory conditions.


Subject(s)
Brain/metabolism , Gliosis/physiopathology , Monocarboxylic Acid Transporters/metabolism , Resuscitation , Shock, Hemorrhagic/blood , Symporters/metabolism , Animals , CD11b Antigen/metabolism , Disease Models, Animal , Excitatory Amino Acid Transporter 2/metabolism , Gliosis/blood , Glucose Transporter Type 3/metabolism , Immunohistochemistry , Isotonic Solutions , Leukosialin/metabolism , Male , Rats , Rats, Sprague-Dawley , Ringer's Lactate , Up-Regulation/physiology
19.
Resuscitation ; 66(2): 209-16, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16053944

ABSTRACT

UNLABELLED: Profound hypothermic arrest ("suspended animation") is a new strategy to improve outcome following uncontrolled lethal hemorrhage (ULH). However, the impact of this approach on the immune/inflammatory response is unknown. This experiment was conducted to test the influence of profound hypothermia on markers of immune/inflammatory system. METHODS: ULH was induced in 32 female swine (80-120 lb) by creating an iliac artery and vein injury, followed 30 min later by laceration of the descending thoracic aorta. Through a left thoracotomy approach, total body hypothermic hyperkalemic metabolic arrest was induced by infusing organ preservation fluids into the aorta using a cardiopulmonary bypass machine (CPB). Experimental groups were (1) normothermic controls (no cooling, NC), or hypothermia induced at the following rates: (2) 0.5 degrees C/min (slow, SC), (3) 1 degrees C/min (medium, MC) and (4) 2 degrees C/min (fast, FC). Vascular injuries were repaired during 60 min of profound (10 degrees C) hypothermic arrest. Hyperkalemia was reversed by hypokalemic fluid exchange, and blood was infused for resuscitation during re-warming (0.5 degrees C/min). The surviving animals were monitored for 6 weeks. Levels of IL-1, TNFalpha, IL-6, IL-10, TGF-1 beta and heat shock protein (HSP-70) were measured by ELISA in serum samples collected serially during the experiment and post-operatively. RESULTS: Some of the immune markers were influenced by the use of CPB, independent of hypothermia (decrease in TGF-1 beta and increase in IL-1 beta). Hypothermia caused a significant decrease in IL-6, and an increase in HSP-70 expression compared to normothermic controls, independent of the cooling rate. An increase in IL-10 levels was noted which was influenced by the rate of cooling (p<0.05, MC versus NC). CONCLUSIONS: Profound hypothermia modulates the post-shock immune/inflammatory system by attenuating the pro-inflammatory IL-6, increasing anti-inflammatory IL-10 and augmenting the protective heat shock responses.


Subject(s)
Cytokines/metabolism , Hypothermia, Induced/methods , Inflammation Mediators/analysis , Shock, Hemorrhagic/mortality , Shock, Hemorrhagic/therapy , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Probability , Random Allocation , Reference Values , Sensitivity and Specificity , Shock, Hemorrhagic/immunology , Survival Rate , Swine
20.
J Surg Res ; 126(2): 172-81, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15919416

ABSTRACT

BACKGROUND: Lethal injuries can be repaired under asanguineous hypothermic arrest (suspended animation) with excellent survival. This experiment was designed to test the impact of this strategy on neuronal and astroglial damage in a swine model of lethal hemorrhage. Furthermore, our goal was to correlate the histological changes in the brain with neurological outcome, and the levels of circulating brain specific markers. MATERIALS AND METHODS: Uncontrolled hemorrhage was induced in 32 female swine (80-120 lbs) by creating an iliac artery and vein injury, followed 30 min later by laceration of the thoracic aorta. Through a thoracotomy approach, organ preservation fluid was infused into the aorta using a roller pump. Experimental groups included normothermic controls (no cooling, NC), and groups where hypothermia was induced at three different rates: 0.5 degrees C/min (slow, SC), 1 degrees C/min (medium, MC), or 2 degrees C/min (fast, FC). Profound hypothermia (core temperature of 10 degrees C) was maintained for 60 min for repair of vascular injuries, after which the animals were re-warmed (0.5 degrees C/min) and resuscitated on cardiopulmonary bypass (CPB). Circulating levels of neuron specific enolase (NSE) and S-100beta were serially measured as markers of damage to neurons and astrocytes, respectively. Light microscopy and quantitative immunohistochemical techniques were used to evaluate hippocampal CA1 area and caudate putamen for neuronal injury and astrogliosis (astrocyte hyperplasia/hypertrophy). Surviving animals were observed for 6 weeks and neurological status was documented on an objective scale, and cognitive functions were evaluated using a technique based upon the concept of operant conditioning. RESULTS: Normothermic arrest resulted in clinical brain death in all of the animals. None of the surviving hypothermic animals displayed any neurological deficits or cognitive impairment. On histological examination, normothermic animals were found to have ischemic changes in the neurons and astrocytes (hypertrophy). In contrast, all of the hypothermic animals had histologically normal brains. The circulating levels of brain specific proteins did not correlate with the degree of brain damage. The changes in NSE levels were not statistically significant, whereas S-100beta increased in the circulation after CPB, largely independent of the temperature modulation. CONCLUSIONS: Profound hypothermia can preserve viability of neurons and astrocytes during prolonged periods of cerebral hypoxia. This approach is associated with excellent cognitive and neurological outcome following severe shock. Circulating markers of central nervous system injury did not correlate with the actual degree of brain damage in this model.


Subject(s)
Astrocytes , Cognition , Heart Arrest, Induced , Hemorrhage/physiopathology , Hemorrhage/surgery , Hypothermia, Induced/methods , Neurons , Animals , Astrocytes/pathology , Cardiopulmonary Bypass , Cell Survival , Female , Hemorrhage/pathology , Hemorrhage/psychology , Hippocampus/pathology , Hypertrophy , Immunohistochemistry , Nervous System/physiopathology , Neurons/pathology , Protein Isoforms/blood , S100 Proteins/blood , Severity of Illness Index , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...