Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9233, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649457

ABSTRACT

The present research applies different statistical analysis and machine learning (ML) approaches to predict and optimize the processing parameters on the wear behavior of ZK30 alloy processed through equal channel angular pressing (ECAP) technique. Firstly, The ECAPed ZK30 billets have been examined at as-annealed (AA), 1-pass, and 4-passes of route Bc (4Bc). Then, the wear output responses in terms of volume loss (VL) and coefficient of friction (COF) have been experimentally investigated by varying load pressure (P) and speed (V) using design of experiments (DOE). In the second step, statistical analysis of variance (ANOVA), 3D response surface plots, and ML have been employed to predict the output responses. Subsequently, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm techniques have been used to optimize the input variables. The experimental results of ECAP process reveal a significant reduction in the average grain size by 92.7% as it processed through 4Bc compared to AA counterpart. Furthermore, 4Bc exhibited a significant improvement in the VL by 99.8% compared to AA counterpart. Both regression and ML prediction models establish a significant correlation between the projected and the actual data, indicating that the experimental and predicted values agreed exceptionally well. The minimal VL at different ECAP passes was obtained at the highest condition of the wear test. Also, the minimal COF for all ECAP passes was obtained at maximum wear load. However, the optimal speed in the wear process decreased with the number of billets passes for minimum COF. The validation of predicted ML models and VL regression under different wear conditions have an accuracy range of 70-99.7%, respectively.

2.
Materials (Basel) ; 15(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36363310

ABSTRACT

Experimental investigations were conducted on Mg-3Zn-0.6Zr alloy under different ECAP conditions of number of passes, die angles, and processing route types, aimed at investigating the impact of the ECAP parameters on the microstructure evolution, corrosion behavior, and mechanical properties to reach optimum performance characteristics. To that end, the response surface methodology (RSM), analysis of variance, second-order regression models, genetic algorithm (GA), and a hybrid RSM-GA were utilized in the experimental study to determine the optimum ECAP processing parameters. All of the anticipated outcomes were within a very small margin of the actual experimental findings, indicating that the regression model was adequate and could be used to predict the optimization of ECAP parameters. According to the results of the experiments, route Bc is the most efficient method for refining grains. The electrochemical impedance spectroscopy results showed that the 4-passes of route Bc via the 120°-die exhibited higher corrosion resistance. Still, the potentiodynamic polarization results showed that the 4-passes of route Bc via the 90°-die demonstrated a better corrosion rate. Furthermore, the highest Vicker's microhardness, yield strength, and tensile strength were also disclosed by four passes of route Bc, whereas the best ductility at fracture was demonstrated by two passes of route C.

3.
Polymers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080660

ABSTRACT

The machining of polymers has become widely common in several components of industry 4.0 technology, i.e., mechanical and structural components and chemical and medical instruments, due to their unique characteristics such as: being strong and light-weight with high stiffness, chemical resistance, and heat and electricity insolation. Along with their properties, there is a need to attain a higher quality surface finish of machined parts. Therefore, this research concerns an experimental and analytical study dealing with the effect of process parameters on process performance during the turning two different types of polymers: high-density polyethylene (HDPE) and unreinforced polyamide (PA6). Firstly, the machining output responses (surface roughness (Ra), material removal rate (MRR), and chip formation (λc)) are experimentally investigated by varying cutting speed (vc), feed rate (f), and depth of cut (d) using the full factorial design of experiments (FFD). The second step concerns the statistical analysis of the input parameters' effect on the output responses based on the analysis of variance and 3D response surface plots. The last step is the application of the RSM desirability function, genetic algorithm (GA), and hybrid FFD-GA techniques to determine the optimum cutting conditions of each output response. The lowest surface roughness for HDPE was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1.47 mm and for PA6 it was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1 mm. The highest material removal rate was obtained at vc = 150 m/min, f = 0.01 mm/rev, and d = 1.5 mm for both materials. At f = 0.01 mm/rev, d = 1.5 mm, and vc = 100 for HDPE, and vc = 77 m/min for PA6, the largest chip thickness ratios were obtained. Finally, the multi-objective genetic algorithm (MOGA) methodology was used and compared.

4.
Materials (Basel) ; 15(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955247

ABSTRACT

In this study, a quantitative evaluation approach was used to investigate how certain ECAP processing parameters affect the microstructural evolution, Vicker's microhardness values and tensile properties of pure Mg. The ECAP processing parameters were number of passes, ECAP die channel angle and processing route type. The response surface methodology (RSM) technique was used to design 16 runs of the experiment using Stat-Ease design expert software. Billets of pure Mg were processed up to four passes of routes Bc, A and C at 225 °C. Two ECAP dies were used with internal channel angles of 90° and 120°. Experimental findings were used to establish empirical models to assess the influence of the ECAP processing parameters on grain size and mechanical properties of ECAPed billets. The established relationships were examined and validated for their adequacy and significance using ANOVA as well as several statistical criteria. Response surface plots and contour graphs were established to offer better understanding of the intended relationships. In addition, the optimum processing parameters for grain size, hardness values and tensile properties were defined. Both experimental results and the theoretical model revealed that route Bc is the most effective route in grain refining. The experimental findings showed that four passes of route Bc through the die channel angle 90° revealed a significant reduction in the grain size by 86% compared to the as-annealed counterparts. Similar to the grain size refining, four-passes processing through the ECAP die with an internal channel angle of 90° leads to improved Vicker's microhardness values. Additionally, four passes of route Bc using the 90° die angle recorded a significant HV increase at the edge and central areas by 112% and 78%, respectively, compared to the as-annealed counterpart. On the other hand, according to the optimization findings, two passes of route Bc using a die angle of 120° resulted in the best ultimate tensile strength for pure Mg, whereas four passes of route Bc revealed the optimum ductility at fracture.

SELECTION OF CITATIONS
SEARCH DETAIL
...