Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771431

ABSTRACT

One of the most important needs in neuroimaging is brain dynamic source imaging with high spatial and temporal resolution. EEG source imaging estimates the underlying sources from EEG recordings, which provides enhanced spatial resolution with intrinsically high temporal resolution. To ensure identifiability in the underdetermined source reconstruction problem, constraints on EEG sources are essential. This paper introduces a novel method for estimating source activities based on spatio-temporal constraints and a dynamic source imaging algorithm. The method enhances time resolution by incorporating temporal evolution of neural activity into a regularization function. Additionally, two spatial regularization constraints based on L 1 and L 2 norms are applied in the transformed domain to address both focal and spread neural activities, achieved through spatial gradient and Laplacian transform. Performance evaluation, conducted quantitatively using synthetic datasets, discusses the influence of parameters such as source extent, number of sources, correlation level, and SNR level on temporal and spatial metrics. Results demonstrate that the proposed method provides superior spatial and temporal reconstructions compared to state-of-the-art inverse solutions including STRAPS, sLORETA, SBL, dSPM, and MxNE. This improvement is attributed to the simultaneous integration of transformed spatial and temporal constraints. When applied to a real auditory ERP dataset, our algorithm accurately reconstructs brain source time series and locations, effectively identifying the origins of auditory evoked potentials. In conclusion, our proposed method with spatio-temporal constraints outperforms the state-of-the-art algorithms in estimating source distribution and time courses.

2.
Int J Neuropsychopharmacol ; 25(8): 631-644, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35380672

ABSTRACT

BACKGROUND: Although transcranial direct current stimulation (tDCS) has shown to potentially mitigate drug craving and attentional bias to drug-related stimuli, individual differences in such modulatory effects of tDCS are less understood. In this study, we aimed to investigate a source of the inter-subject variability in the tDCS effects that can be useful for tDCS-based treatments of individuals with methamphetamine (MA) use disorder (IMUD). METHODS: Forty-two IMUD (all male) were randomly assigned to receive a single-session of either sham or real bilateral tDCS (anodal right/cathodal left) over the dorsolateral prefrontal cortex. The tDCS effect on MA craving and biased attention to drug stimuli were investigated by quantifying EEG-derived P3 (a measure of initial attentional bias) and late positive potential (LPP; a measure of sustained motivated attention) elicited by these stimuli. To assess the association of changes in P3 and LPP with brain connectivity network (BCN) topology, the correlation between topology metrics, specifically those related to the efficiency of information processing, and the tDCS effect was investigated. RESULTS: The P3 amplitude significantly decreased following the tDCS session, whereas the amplitudes increased in the sham group. The changes in P3 amplitudes were significantly correlated with communication efficiency measured by BCN topology metrics (r = -0.47, P = .03; r = -0.49, P = .02). There was no significant change in LPP amplitude due to the tDCS application. CONCLUSIONS: These findings validate that tDCS mitigates initial attentional bias, but not the sustained motivated attention, to MA stimuli. Importantly, however, results also show that the individual differences in the effects of tDCS may be underpinned by communication efficiency of the BCN topology, and therefore, these BCN topology metrics may have the potential to robustly predict the effectiveness of tDCS-based interventions on MA craving and attentional bias to MA stimuli among IMUD.


Subject(s)
Attentional Bias , Methamphetamine , Transcranial Direct Current Stimulation , Brain , Cues , Electroencephalography , Humans , Male , Methamphetamine/adverse effects , Prefrontal Cortex , Transcranial Direct Current Stimulation/methods
3.
Network ; 30(1-4): 1-30, 2019.
Article in English | MEDLINE | ID: mdl-31240983

ABSTRACT

We propose a new source connectivity method by focusing on estimating time courses of the regions of interest (ROIs). To this aim, it is necessary to consider the strong inherent non-stationary behavior of neural activity. We develop an iterative dynamic approach to extract a single time course for each ROI encoding the temporal non-stationary features. The proposed approach explicitly includes dynamic constraints by taking into account the evolution of the sources activities for further dynamic connectivity analysis. We simulated an epileptic network with a non-stationary structure; accordingly, EEG source reconstruction using LORETA is performed. Using the reconstructed sources, the spatially compact ROIs are selected. Then, a single time course encoding the temporal non-stationarity is extracted for each ROI. An adaptive directed transfer function (ADTF) is applied to measure the information flow of underlying brain networks. Obtained results demonstrate that the contributed approach is more efficient to estimate the ROI time series and ROI to ROI information flow in comparison with existing methods. Our work is validated in three drug-resistance epilepsy patients. The proposed ROI time series estimation directly affects the quality of connectivity analysis, leading to the best possible seizure onset zone (SOZ) localization verified by electrocorticography and post-operational results.


Subject(s)
Algorithms , Brain Mapping/methods , Brain/physiopathology , Drug Resistant Epilepsy/physiopathology , Models, Neurological , Adolescent , Child , Child, Preschool , Electroencephalography , Female , Humans , Male , Neural Pathways/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...