Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 339: 117866, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37030236

ABSTRACT

Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.


Subject(s)
Bioreactors , Carotenoids , Biomass , Fatty Acids , Fermentation
2.
J Agric Food Chem ; 70(35): 10807-10817, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36008363

ABSTRACT

Sustainable food systems that employ renewable resources without competition with the food chain are drivers for the bioeconomy era. This study reports the valorization of microwave-pretreated spent coffee grounds (SCGs) to produce oleogels rich in bioactive compounds. Microbial oil rich in carotenoids (MOC) was produced under batch fermentation of Rhodosporidium toruloides using SCG enzymatic hydrolysates. Candelilla wax (CLW) could structure MOC and sunflower oil at a 3.3-fold lower concentration than that of carnauba wax (CBW). MOC-based oleogels with 10% CBW and 3% CLW showed an elastic-dominant and gel-like structure (tan δ ≪ 1), providing gelation and oil binding capacity (>95%). Dendritic structures of CBW-based oleogels and evenly distributed rod-like crystals of CLW-based ones were observed via polarized light microscopy. MOC-based oleogels exhibited similar Fourier-transform infrared spectroscopy spectra. X-ray diffractograms of oleogels were distinguished by the oil type that presented ß'-type polymorphism. MOC-based oleogels could be applied in confectionary products and spreads as substitutes for trans fatty acids, reformulating fat-containing food products.


Subject(s)
Carotenoids , Coffee , Organic Chemicals/chemistry , Rheology
3.
Bioresour Technol ; 326: 124711, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33550212

ABSTRACT

This study presents techno-economic evaluation of a biorefinery concept using biodiesel industry by-products (sunflower meal and crude glycerol) to produce poly(3-hydroxybutyrate) (PHB), crude phenolic extracts (CPE) and protein isolate (PI). The PHB production cost at two annual production capacities ($12.5/kg for 2,500 t PHB/year and $7.8/kg for 25,000 t PHB/year) was not cost-competitive to current PHB production processes when the revenues derived from co-products were not considered. Sensitivity analysis projected the economic viability of a biorefinery concept that could achieve a minimum selling price of $1.1/kg PHB similar to polypropylene. The annual PHB production capacity and the identification of marketable end-uses with respective market prices for the co-products CPE and PI were crucial in attaining process profitability. Greenhouse gas emissions (ca. 0.64 kg CO2-eq/kg PHB) and abiotic depletion potential (61.7 MJ/kg PHB) were lower than polypropylene. Biorefining of sunflower meal and crude glycerol could lead to sustainable PHB production.


Subject(s)
Biofuels , Helianthus , 3-Hydroxybutyric Acid , Hydroxybutyrates , Polyesters , Prohibitins
4.
Biomolecules ; 10(1)2020 01 08.
Article in English | MEDLINE | ID: mdl-31936326

ABSTRACT

Oleogelation is an emerging technology to structure oils, which can be widely used to substitute saturated and trans fats. Extra virgin olive oil is widely recognized for its high nutritional value, but its utilization in oleogel production is currently limited. In this study, extra virgin olive oil was utilized for the production of a novel oleogel using wax esters derived from soybean fatty acid distillate (SFAD), a byproduct of industrial soybean oil refining. Different concentrations (7%, 10%, 20%, w/w) of SFAD-wax esters were used to evaluate the minimum concentration requirement to achieve oleogelation. Analyses of the mechanical properties of oleogel showed a firmness of 3.8 N, which was then reduced to around 2.1-2.5 N during a storage period of 30 days at 4 °C. Rheological analysis demonstrated that G' is higher than G″ at 20-27 °C, which confirms the solid properties of the oleogel at this temperature range. Results showed that SFAD was successfully utilized for the oleogelation of olive oil, resulting in a novel oleogel with desirable properties for food applications. This study showed that industrial fatty side streams could be reused for the production of value-added oleogels with novel food applications.


Subject(s)
Fatty Acids/chemistry , Olive Oil/chemistry , Esters/chemistry , Organic Chemicals/chemical synthesis , Organic Chemicals/metabolism , Soybean Oil/chemistry , Glycine max
5.
Food Res Int ; 126: 108684, 2019 12.
Article in English | MEDLINE | ID: mdl-31732046

ABSTRACT

This study presents the production of novel oleogels via circular valorisation of food industry side streams. Sugarcane molasses and soybean processing side streams (i.e. soybean cake) were employed as fermentation feedstocks for the production of microbial oil. Fed-batch bioreactor fermentations carried out by the oleaginous yeast Rhodosporidium toruloides led to the production of 36.9 g/L total dry weight with an intracellular oil content of 49.8% (w/w) and 89.4 µg/g carotenoids. The carotenoid-rich microbial oil and soybean oil were evaluated as base oils for the production of wax-based oleogels. The wax esters, used as oleogelators, were produced via enzymatic catalysis, using microbial oil or soybean fatty acid distillate as raw materials. All oleogels presented a gel-like behaviour (G' > G″). However, the highest G' was determined for the oleogel produced from soybean oil and microbial oil-wax esters, which indicated a stronger network. Thermal analysis showed that this oleogel had a melting temperature profile up to 35 °C, which is favorable for applications in the confectionery industry. Also, texture analysis demonstrated that soybean oil-microbial oil wax oleogel was stable (1.9-2.2 N) within 30-days storage period. This study showed the potential of novel oleogels production through the development of bioprocesses based on the valorisation of various renewable resources.


Subject(s)
Soybean Oil/metabolism , Yeasts/metabolism , Basidiomycota/metabolism , Bioreactors/microbiology , Carotenoids/metabolism , Fermentation , Food Handling , Molasses , Oils/metabolism , Organic Chemicals/analysis , Organic Chemicals/metabolism
6.
Food Technol Biotechnol ; 57(1): 29-38, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31316274

ABSTRACT

The side streams derived from the palm oil production process, namely palm kernel cake, palm pressed fibre, palm kernel shells and empty fruit bunches, were evaluated as sources of phenolic compounds. Among these streams, kernel cake had the highest total phenolic content (in mg of gallic acid equivalents (GAE) per g of dry sample) with a value of 5.19, whereas the empty fruit bunches had the lowest value (1.79). The extraction time and liquid-to-solid ratio were investigated to optimize the phenolic extraction. Kernel cake exhibited the highest total phenolic content (5.35 mg/g) with a liquid-to-solid ratio of 40:1 during 20 min of extraction. The main phenolic compounds of the extracts deriving from all byproduct streams were also identified and quantified with HPLC-DAD. Pyrogallol, 4-hydroxybenzoic acid, gallic acid and ferulic acid were the main compounds found in kernel cake extracts. Empty fruit bunch and pressed fibre extracts were also rich in 4-hydroxybenzoic acid, while pyrogallol was the predominant compound in kernel shell extracts. All extracts showed antioxidant activity as it was indicated from the results of DPPH analysis and subsequently tested in sunflower oil aiming to prolong its shelf life. The addition of 0.8% kernel cake extract increased the induction time of sunflower oil more than 50%. According to the results obtained in this study, kernel cake extracts could be considered as a value-added co-product with a potential application as antioxidants in the food industry.

7.
Molecules ; 24(2)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30634450

ABSTRACT

Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.


Subject(s)
Glycerol/chemistry , Olive Oil/chemistry , Wastewater/chemistry , Yarrowia/growth & development , Batch Cell Culture Techniques , Biodegradation, Environmental , Citric Acid/metabolism , Industrial Waste , Oleic Acid/metabolism , Yarrowia/metabolism
8.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30476146

ABSTRACT

2,3-Butanediol (BDO) is an important platform chemical with a wide range of applications in various industries. In the present study, a newly isolated wild Enterobacter sp. strain (FMCC-208) was evaluated towards its ability to produce BDO on media composed of sugars derived from sucrose refinery plant. Optimum values of temperature and pH as well as substrate inhibition were determined through batch experiments. The ability of the strain to convert various monosaccharides was also investigated. Maximum BDO concentrations of 90.3 and 10 g l-1 of acetoin were obtained during a fed-batch bioreactor experiment with cane molasses and sucrose employed as substrates. A high volumetric productivity was noted in a fed-batch experiment using molasses and sucrose as carbon sources at T = 37°C, in which 73.0 g l-1 of BDO together with 12.4 g l-1 of acetoin was produced where 1.15 g l-1 h-1 of diol/acetoin was produced. In previously pasteurized media, 70.0 g l-1 of BDO and 5.0 g l-1 of acetoin were produced (yield = 0.39 g g-1). Finally, besides BDO production, growth on molasses was accompanied by non-negligible decolorization (25-35%) of the residue. Therefore, the strain is a promising candidate for the conversion of sucrose-based materials into BDO.


Subject(s)
Butylene Glycols/metabolism , Carbohydrate Metabolism , Culture Media/chemistry , Enterobacter/metabolism , Bioreactors , Carbohydrates/chemistry , Culture Media/economics , Enterobacter/growth & development , Hydrogen-Ion Concentration , Temperature
9.
J Hazard Mater ; 365: 88-96, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30412811

ABSTRACT

Ionic liquids (ILs) have been characterized as contaminants of emerging concern (CEC) that often resist biodegradation and impose toxicity upon environmental release. Sphingomonas sp. MKIV has been isolated as an extreme microorganism capable for biodegradation of major classes of ILs. Six imidazolium-, pyridinium- and ammonium-based ILs (pyridinium trifluoromethanesulfonate [Py][CF3SO3], 1-(4-pyridyl)pyridinium chloride [1-4PPy][Cl], 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium methanesulfonate [BMIM][MeSO4], tetrabutylammonium iodide [n-Bu4N][I] and tetrabutylammonium hexafluorophosphate [n-Bu4N][PF6]) were used for microbial growth. The strain achieved 91% and 87% removal efficiency for cultures supplemented with 100 mg L-1 of [BMIM][MeSO4] and [n-Bu4N][I] respectively. The metabolic activity of MKIV was inhibited following preliminary stages of cultures conducted using [BMIM][MeSO4], [BMIM][Br], [Py][CF3SO3] and [n-Bu4N][PF6], indicating potential accumulation of inhibitory metabolites. Thus, a comprehensive toxicological study of the six ILs on Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata was conducted demonstrating that the compounds impose moderate and low toxicity. The end-products from [BMIM][MeSO4] and [n-Bu4N][I] biodegradation were assessed using Aliivibrio fischeri, exhibiting increased environmental impact of the latter following biotreatment. MKIV produced 19.29 g L-1 of biopolymer, comprising mainly glucose and galacturonic acid, from 25 g L-1 of glucose indicating high industrial significance for bioremediation and exopolysaccharide production.


Subject(s)
Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Ionic Liquids/metabolism , Ionic Liquids/toxicity , Sphingomonas/metabolism , Aliivibrio fischeri/drug effects , Animals , Biodegradation, Environmental , Chlorophyceae/drug effects , Daphnia/drug effects , Polysaccharides, Bacterial/metabolism , RNA, Ribosomal, 16S/genetics , Sphingomonas/genetics , Sphingomonas/isolation & purification
10.
Environ Sci Pollut Res Int ; 25(36): 35960-35970, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29654455

ABSTRACT

The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.


Subject(s)
Aspergillus oryzae/enzymology , Biofuels , Fumarates , Glycine max , Industrial Waste , Saccharum , Sugars/metabolism , Batch Cell Culture Techniques , Chemical Industry , Conservation of Natural Resources , Fermentation , Food Industry , Fumarates/metabolism , Hydrolysis , Rhizopus/enzymology
11.
ACS Omega ; 3(8): 10365-10373, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459164

ABSTRACT

Citrus juices from whole oranges and grapefruits (discarded from open market) and aqueous extracts from citrus processing waste (mainly peels) were used for bacterial cellulose production by Komagataeibacter sucrofermentans DSM 15973. Grapefruit and orange juices yielded higher bacterial cellulose concentration (6.7 and 6.1 g/L, respectively) than lemon, grapefruit, and orange peels aqueous extracts (5.2, 5.0, and 2.9 g/L, respectively). Compared to the cellulosic fraction isolated from depectinated orange peel, bacterial cellulose produced from orange peel aqueous extract presented improved water-holding capacity (26.5 g water/g, 3-fold higher), degree of polymerization (up to 6-fold higher), and crystallinity index (35-86% depending on the method used). The presence of absorption bands at 3240 and 3270 cm-1 in the IR spectrum of bacterial cellulose indicated that the bacterial strain K. sucrofermentans synthesizes both Iα and Iß cellulose types, whereas the signals in the 13C NMR spectrum demonstrated that Iα cellulose is the dominant type.

13.
Bioresour Technol ; 245(Pt A): 274-282, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892702

ABSTRACT

The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries.


Subject(s)
Esters , Food Industry , Industrial Waste , Esterification , Lipase , Plant Oils , Waxes
14.
Bioresour Technol ; 238: 214-222, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28433910

ABSTRACT

Spent sulphite liquor (SSL) was used as carbon source for the production of succinic acid using immobilized cultures of Actinobacillus succinogenes and Basfia succiniciproducens on two different supports, delignified cellulosic material (DCM) and alginate beads. Fed-batch immobilized cultures with A. succinogenes in alginates resulted in higher sugar to succinic acid conversion yield (0.81g/g) than the respective yield achieved (0.65g/g) when DCM immobilized cultures were used. The final succinic acid concentration and yield achieved in fed-batch with immobilized cultures of B. succiniciproducens in alginates (45g/L and 0.66g/g) were higher than A. succinogenes immobilized cultures (35.4g/L and 0.61g/g) using nano-filtrated SSL as fermentation medium. Immobilized cultures of B. succiniciproducens in alginate beads were reused in four sequential fed-batch fermentations of nano-filtrated SSL leading to the production of 64.7g of succinic acid with a yield range of 0.42-0.67g/g and productivity range of 0.29-0.65g/L/h. The immobilized cultures improved the efficiency of succinic acid production as compared to free cell cultures.


Subject(s)
Actinobacillus , Fermentation , Succinic Acid , Bioreactors , Sulfites
15.
Eng Life Sci ; 17(3): 237-248, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624771

ABSTRACT

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under nonaseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% w/v. However, 4.0% w/v of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% w/w per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% w/w of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value among the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for "second generation" biodiesel.

16.
Eng Life Sci ; 17(3): 262-281, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32624773

ABSTRACT

Oleochemical activities (e.g. biodiesel production, fat saponification) generate annually very high amounts of concentrated glycerol-containing waters (called crude glycerol) as the principal residues of these processes. Crude glycerol is an industrial residue the valorization of which attracts remarkable and constantly increasing interest. In the current investigation, biodiesel-derived glycerol was employed as substrate for yeast and fungal strains cultivated under nitrogen-limited conditions in shake flasks. Glucose was employed as reference substrate. Several yeasts (Candida diddensiae, Candida tropicalis, Pichia ciferrii, Williopsis saturnus, Candida boidinii, and Candida oleophila) rapidly assimilated glucose and converted it into ethanol, despite aerobic conditions imposed, and were Crabtree-positive. None of these yeasts produced ethanol during growth on glycerol or accumulated significant quantities of lipid during growth on glucose or glycerol. Only Rhodosporidium toruloides produced notable lipid quantities from glucose and to lesser extent from glycerol. Yarrowia lipolytica LFMB 20 produced citrate ≈58 g/L growing on high-glucose media, while on high-glycerol media ≈42 g/L citrate and ≈18 g/L mannitol. During growth on glucose/glycerol blends, glycerol was assimilated first and thereafter glucose was consumed. Fungi produced higher lipid quantities compared with yeasts. High lipid quantities were produced by Mortierella ramanniana, Mucor sp., and mainly Mortierella isabellina, with glycerol being more adequate for M. ramanniana and glucose for Mucor sp. and M. isabellina. M. isabellina ATHUM 2935 produced lipids of 8.5 g/L, 83.3% w/w in dry cell weight (DCW) and conversion yield per unit of glucose consumed ≈0.25 g/g. The respective values on glycerol were 5.4 g/L, 66.6% w/w in DCW and ≈0.22 g/g. Lipids of all microorganisms were analyzed with regards to their fatty acid composition, and M. isabellina presented the closest similitude with rapeseed oil. Crude lipids produced by this fungus and extracted with chloroform/methanol blend, were composed mostly of triacylglycerols, thus indicating that these solvents are adequate for triacylglycerol extraction.

17.
Eng Life Sci ; 17(6): 695-709, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32624815

ABSTRACT

Yarrowia lipolytica ACA-YC 5033 was grown on glucose-based media in which high amounts of olive mill wastewaters (OMWs) had been added. Besides shake-flask aseptic cultures, trials were also performed in previously pasteurized media while batch bioreactor experiments were also done. Significant decolorization (∼58%) and remarkable removal of phenolic compounds (∼51% w/w) occurred, with the latter being amongst the highest ones reported in the international literature, as far as yeasts were concerned during their growth on phenol-containing media. In nitrogen-limited flask fermentations the microorganism produced maximum citric acid quantity ≈19.0 g/L [simultaneous yield of citric acid produced per unit of glucose consumed (YCit/Glc)≈0.74 g/g]. Dry cell weight (DCW) values decreased at high phenol-containing media, but, on the other hand, the addition of OMWs induced reserve lipid accumulation. Maximum citric acid concentration achieved (≈52.0 g/L; YCit/Glc≈0.64 g/g) occurred in OMW-based high sugar content media (initial glucose added at ≈80.0 g/L). The bioprocess was successfully simulated by a modified logistic growth equation. A satisfactory fitting on the experimental data occurred while the optimized parameter values were found to be similar to those experimentally measured. Finally, a non-aseptic (previously pasteurized) trial was performed and its comparison with the equivalent aseptic experiment revealed no significant differences. Yarrowia lipolytica hence can be considered as a satisfactory candidate for simultaneous OMWs bioremediation and the production of added-value compounds useful for the food industry.

18.
Bioresour Technol ; 224: 509-514, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27839680

ABSTRACT

In this work a mathematical programming model for the optimal design of the bioreaction section of biotechnological processes is presented. Equations for the estimation of the equipment cost derived from a recent publication by the US National Renewable Energy Laboratory (NREL) are also summarized. The cost-optimal design of process units and the optimal scheduling of their operation can be obtained using the proposed formulation that has been implemented in software available from the journal web page or the corresponding author. The proposed optimization model can be used to quantify the effects of decisions taken at a lab scale on the industrial scale process economics. It is of paramount important to note that this can be achieved at the early stage of the development of a biotechnological project. Two case studies are presented that demonstrate the usefulness and potential of the proposed methodology.


Subject(s)
Biotransformation , Models, Theoretical , Biotechnology/methods , Butylene Glycols/chemistry , Butylene Glycols/metabolism , Conservation of Energy Resources , Glycerol/metabolism , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Polyesters/chemistry , Polyesters/metabolism , Prohibitins , Software
19.
Appl Biochem Biotechnol ; 181(4): 1241-1256, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27787766

ABSTRACT

This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.


Subject(s)
Biofuels/microbiology , Bioreactors/microbiology , Fermentation , Plant Oils/chemistry , Aspergillus oryzae/metabolism , Biotechnology , Carbon/metabolism , Hydrolysis , Palm Oil , Peptide Hydrolases/metabolism
20.
Mater Sci Eng C Mater Biol Appl ; 71: 214-221, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27987701

ABSTRACT

Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity.


Subject(s)
Acetobacteraceae/chemistry , Cellulose/chemistry , Drug Carriers/chemistry , Enzymes, Immobilized/chemistry , Polysaccharides, Bacterial/chemistry , Saccharomyces cerevisiae/cytology , Trypsin/chemistry , Animals , Cattle , Cells, Immobilized/cytology , Gentian Violet/chemistry , Indoles/chemistry , Magnetics , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...