Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(26): 43722-43731, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178462

ABSTRACT

Enhancing the ability to resolve axial details is crucial in three-dimensional optical imaging. We provide experimental evidence showcasing the ultimate precision achievable in axial localization using vortex beams. For Laguerre-Gauss (LG) beams, this remarkable limit can be attained with just a single intensity scan. This proof-of-principle demonstrates that microscopy techniques based on LG vortex beams can potentially benefit from the introduced quantum-inspired superresolution protocol.

2.
Phys Rev Lett ; 123(19): 193601, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765209

ABSTRACT

We derive fundamental precision bounds for single-point axial localization. For Gaussian beams, this ultimate limit can be achieved with a single intensity scan, provided the camera is placed at one of two optimal transverse detection planes. Hence, for axial localization there is no need of more complicated detection schemes. The theory is verified with an experimental demonstration of axial resolution 3 orders of magnitude below the classical depth of focus.

3.
Opt Lett ; 44(12): 3114-3117, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199394

ABSTRACT

We show that, for optical systems whose point spread functions exhibit isolated zeros, the information one can gain about the separation between two incoherent point light sources does not scale quadratically with the separation (which is the distinctive dependence causing Rayleigh's curse) but only linearly. Moreover, the dominant contribution to the separation information comes from regions in the vicinity of these zeros. We experimentally confirm this idea, demonstrating significant superresolution using natural or artificially created spectral doublets.

4.
Phys Rev Lett ; 122(10): 100404, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30932629

ABSTRACT

Quantum state tomography is both a crucial component in the field of quantum information and computation and a formidable task that requires an incogitable number of measurement configurations as the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum state without any additional a priori assumption whatsoever (such as rank information, purity, etc.) about the state, apart from its dimension.

5.
Sci Rep ; 7: 45045, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28344336

ABSTRACT

Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.

SELECTION OF CITATIONS
SEARCH DETAIL
...