Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 441: 138175, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38194793

ABSTRACT

Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.


Subject(s)
Salvia officinalis , Humans , Salvia officinalis/chemistry , Hydrogen Peroxide , Plant Extracts/chemistry , Phytochemicals/analysis , Antioxidants/chemistry
2.
Curr Med Chem ; 29(34): 5496-5509, 2022.
Article in English | MEDLINE | ID: mdl-34547993

ABSTRACT

Vascular aging is a crucial risk factor for atherosclerotic ischemic stroke. Vascular aging is characterized by oxidative stress, endothelial dysfunction, inflammation, intimal and media thickening, as well as the gradual development of arterial stiffness, among other pathophysiological features. Regarding oxidative stress, increased concentration of reactive oxygen and nitrogen species is linked to atherosclerotic ischemic stroke in vascular aging. Additionally, oxidative stress is associated with an inflammatory response. Inflammation is related to aging through the "inflammaging" theory, which is characterized by decreased ability to cope with a variety of stressors, in combination with an increased pro-inflammatory state. Vascular aging is correlated with changes in cerebral arteries that are considered predictors of the risk for atherosclerotic ischemic stroke. The aim of the present review is to present the role of oxidative stress and inflammation in vascular aging, as well as their involvement in atherosclerotic ischemic stroke.


Subject(s)
Atherosclerosis , Ischemic Stroke , Stroke , Aging/physiology , Atherosclerosis/complications , Humans , Inflammation , Oxidative Stress/physiology , Stroke/complications
3.
Angiology ; 72(8): 776-786, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33678047

ABSTRACT

Platelets mediate circulating endothelial progenitor cell (EPC) recruitment and maturation, participating in vascular repair, however the underlying mechanism(s) remain unclear. We investigated the effect of platelet-rich plasma (PRP) on the functionality of CD34+-derived late-outgrowth endothelial cells (OECs) in culture. Confluent OECs were coincubated with PRP under platelet aggregation (with adenosine diphosphate; ADP) and nonaggregation conditions, in the presence/absence of the reversible P2Y12 platelet receptor antagonist ticagrelor. Outgrowth endothelial cell activation was evaluated by determining prostacyclin (PGI2) and monocyte chemoattractant protein-1 (MCP-1) release and intercellular adhesion molecule-1 (ICAM-1) membrane expression. Similar experiments were performed using human umbilical vein endothelial cells (HUVECs). Platelet-rich plasma increased ICAM-1 expression and PGI2 and MCP-1 secretion compared with autologous platelet-poor plasma, whereas ADP-aggregated platelets in PRP did not exhibit any effect. Platelet-rich plasma pretreated with ticagrelor prior to activation with ADP increased all markers to a similar extent as PRP. Similar results were obtained using HUVECs. In conclusion, PRP induces OEC activation, a phenomenon not observed when platelets are aggregated with ADP. Platelet inhibition with ticagrelor restores the PRP capability to activate OECs. Since EPC activation is important for endothelial regeneration and angiogenesis, we suggest that agents inhibiting platelet aggregation, such as ticagrelor, may promote platelet-EPC interaction and EPC function.


Subject(s)
Blood Platelets/metabolism , Cell Communication , Endothelial Progenitor Cells/metabolism , Platelet-Rich Plasma/metabolism , Antigens, CD34/metabolism , Biomarkers/metabolism , Blood Platelets/drug effects , Cell Communication/drug effects , Cells, Cultured , Chemokine CCL2/metabolism , Endothelial Progenitor Cells/drug effects , Epoprostenol/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet-Rich Plasma/drug effects , Ticagrelor/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...