Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 6988, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29725079

ABSTRACT

The fabrication, by an all electrochemical process, of porous Si/ZnO nanostructures with engineered structural defects, leading to strong and broadband deep level emission from ZnO, is presented. Such nanostructures are fabricated by a combination of metal-assisted chemical etching of Si and direct current electrodeposition of ZnO. It makes the whole fabrication process low-cost, compatible with Complementary Metal-Oxide Semiconductor technology, scalable and easily industrialised. The photoluminescence spectra of the porous Si/ZnO nanostructures reveal a correlation between the lineshape, as well as the strength of the emission, with the morphology of the underlying porous Si, that control the induced defects in the ZnO. Appropriate fabrication conditions of the porous Si lead to exceptionally bright Gaussian-type emission that covers almost the entire visible spectrum, indicating that porous Si/ZnO nanostructures could be a cornerstone material towards white-light-emitting devices.

2.
Nanotechnology ; 26(15): 155301, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25800030

ABSTRACT

Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications.

3.
Nano Lett ; 12(1): 259-63, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22132841

ABSTRACT

The photosensitivity of nanocomposite AlN films with embedded silver nanospheres is reported. It stems from localized surface plasmon resonances (LSPR) whose modulation is photoinduced by laser annealing that induces a combined effect of metallic nanoparticle enlargement and dielectric matrix recrystallization; the photoindunced changes of the refractive index of the matrix result in strong spectral shift of LSPR. We demonstrate the utilization of this process for spectrally selective optical encoding into hard, durable, and chemically inert films.


Subject(s)
Inorganic Chemicals/chemistry , Inorganic Chemicals/radiation effects , Molecular Imprinting/methods , Nanostructures/chemistry , Nanostructures/radiation effects , Refractometry/methods , Surface Plasmon Resonance/methods , Hardness , Information Storage and Retrieval/methods , Light , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Particle Size , Surface Properties/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...