Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 103: 57-69, 2021 12.
Article in English | MEDLINE | ID: mdl-34582849

ABSTRACT

The gold standard in cryopreservation is still conventional slow freezing of single cells or small aggregates in suspension, although major cell loss and limitation to non-specialised cell types in stem cell technology are known drawbacks. The requirement for rapidly available therapeutic and diagnostic cell types is increasing constantly. In the case of human induced pluripotent stem cells (hiPSCs) or their derivates, more sophisticated cryopreservation protocols are needed to address this demand. These should allow a preservation in their physiological, adherent state, an efficient re-cultivation and upscaling upon thawing towards high-throughput applications in cell therapies or disease modelling in drug discovery. Here, we present a novel vitrification-based method for adherent hiPSCs, designed for automated handling by microfluidic approaches and with ready-to-use potential e.g. in suspension-based bioreactors after thawing. Modifiable alginate microcarriers serve as a growth surface for adherent hiPSCs that were cultured in a suspension-based bioreactor and subsequently cryopreserved via droplet-based vitrification in comparison to conventional slow freezing. Soft (0.35%) versus stiff (0.65%) alginate microcarriers in concert with adhesion time variation have been examined. Findings revealed specific optimal conditions leading to an adhesion time and growth surface (matrix) elasticity dependent hypothesis on cryo-induced damaging regimes for adherent cell types. Deviations from the found optimum parameters give rise to membrane ruptures assessed via SEM and major cell loss after adherent vitrification. Applying the optimal conditions, droplet-based vitrification was superior to conventional slow freezing. A decreased microcarrier stiffness was found to outperform stiffer material regarding cell recovery, whereas the stemness characteristics of rewarmed hiPSCs were preserved.


Subject(s)
Induced Pluripotent Stem Cells , Vitrification , Alginates , Cryopreservation/methods , Elasticity , Freezing , Humans
2.
Stem Cell Res ; 34: 101358, 2019 01.
Article in English | MEDLINE | ID: mdl-30640062

ABSTRACT

Hypoxia benefits undifferentiated pluripotent stem cell renewal, and 2-oxoglutarate (2OG) dioxygenases have been implicated in pluripotent stem cell induction and renewal. We show in human embryonic stem cells (hESC) that an ambient oxygen-induced oxidative stress response elicited by culture in a hypoxic atmosphere (0.5% O2) correlates with the expression of 2OG dioxygenases, which oxidise DNA (TET1, 2, 3) and histone H3 (KDM4C), the former reflected by elevation in genomic 5-hydroxymethylcytosine (5hmC). siRNA-mediated targeting of KDM4C and TET1-3 induces hESC differentiation. Under ambient atmospheric oxygen (21% O2), exposure to a low inhibitory concentration of sodium arsenite (NaAsO2, IC10), as a model of chemically-induced oxidative stress, suppresses antioxidant gene expression, reduces mitochondrial membrane potential and induces hESC differentiation. Co-administration of the antioxidant N-acetyl-L-cysteine promoted anti-oxidant, pluripotency and 2OG dioxygenase gene expression, elevated genomic hydroxymethylation and blocked induction of differentiation. Transient ectopic expression of KDM4C or TET1 in ambient atmospheric oxygen achieved the same. Our study substantiates a role for 2OG-dependent dioxygenases in hypoxia's promotion of undifferentiated hESC self-renewal.


Subject(s)
Cell Differentiation , Dioxygenases/metabolism , Human Embryonic Stem Cells/cytology , Ketoglutaric Acids/metabolism , Oxidative Stress , Arsenites/toxicity , Cell Differentiation/drug effects , Cell Line , Human Embryonic Stem Cells/drug effects , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Oxidative Stress/drug effects , Oxygen/pharmacology , Phenotype , Proto-Oncogene Proteins/metabolism , Sodium Compounds/toxicity
3.
Clin Epigenetics ; 7: 98, 2015.
Article in English | MEDLINE | ID: mdl-26366235

ABSTRACT

BACKGROUND: Global deregulation of DNA methylation is one of the crucial causes of hepato cellular carcinoma (HCC). It has been reported that the anti-cancer drug 5-azacytidine (5-AZA) mediates the activation of tumor suppressor genes through passive demethylation by inhibiting DNMT1. Recent evidence suggests that active demethylation which is mediated by ten-eleven translocation (TET) proteins may also be an important step to control global methylation. However, there exists a controversial discussion in which TET proteins are involved in the demethylation process in HCC. Therefore, we firstly wanted to identify which of the TETs are involved in demethylation and later to study whether or not 5-AZA could trigger the TET-dependent active demethylation process in HCC. HCC cell lines (Huh-7, HLE, HLF), primary human hepatocytes (hHeps), and tissues from both healthy (55 patients) and HCC patients (55 patients) were included in this study; mRNA levels of isocitrate dehydrogenase (IDH1, 2) and TETs (TET1-3) were studied via qPCR and confirmed by Western blot. The expression of 5hmC/5mC was determined by immunohistochemistry in human HCC tissues and the corresponding adjacent healthy liver. HCC cell lines were stimulated with 5-AZA (0-20 µM) and viability (Resazurin conversion), toxicity (LDH release), proliferation (PCNA), and 5hmC/5mC distribution were assessed. In addition, knockdown experiments on TET proteins in HCC cell lines using short interference RNAs (siRNAs), in the presence and absence of 5-AZA, were performed. RESULTS: Our data applying qPCR, immunofluorescence, and Western blotting clearly show that TET2 and TET3 but not TET1 were significantly decreased in HCC tissue and different HCC cell lines compared to non-tumor liver tissues and hHeps. In addition, we show here for the first time applying knockdown experiments that 5-AZA is able to trigger an active TET2-dependent demethylation process with concomitant significant changes in 5hmC/5mC in HCC cell lines and hHeps. CONCLUSIONS: Our data clearly show that the expression and activity of TET2 and TET3 proteins but not TET1 are impaired in hepatocellular carcinoma leading to the reduction of 5hmC in HCCs. Furthermore, this study identified a novel function of 5-azacytidine in promoting a TET-mediated generation of 5hmC suggesting that the availability of 5-AZA in cancer cells will have various effects on different epigenetic targets. These findings may open new therapeutic strategies for epigenetic drugs to treat HCC.

4.
PLoS One ; 10(7): e0131102, 2015.
Article in English | MEDLINE | ID: mdl-26151932

ABSTRACT

Human embryonic stem cells (hESCs) undergo epigenetic changes in vitro which may compromise function, so an epigenetic pluripotency "signature" would be invaluable for line validation. We assessed Cytosine-phosphate-Guanine Island (CGI) methylation in hESCs by genomic DNA hybridisation to a CGI array, and saw substantial variation in CGI methylation between lines. Comparison of hESC CGI methylation profiles to corresponding somatic tissue data and hESC mRNA expression profiles identified a conserved hESC-specific methylation pattern associated with expressed genes. Transcriptional repressors and activators were over-represented amongst genes whose associated CGIs were methylated or unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic expression in fibroblasts modulated iPSC colony formation. Chromatin immunoprecipitation confirmed interaction between the candidates and the core pluripotency transcription factor network. We thus identify novel pluripotency genes on the basis of a conserved and distinct epigenetic configuration in human stem cells.


Subject(s)
CpG Islands/genetics , DNA Methylation , Epigenesis, Genetic , Human Embryonic Stem Cells/metabolism , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Epigenomics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Gene Regulatory Networks , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Protein Binding , RNA Interference , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...