Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 8(2): e2300564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37462256

ABSTRACT

Incontrovertibly there is an increasing demand for the development of benign inks suitable for fabrication of high-performing perovskite-based thin film functional layers. Nevertheless, most reported perovskite precursors rely on the use of highly toxic solvents such as acetonitrile, 2-methoxyethanol, dimethylformamide, and many others. Hence, there is a strong imperative for the development of novel and greener inks, which will facilitate smoother commercialization of technologies based on functional perovskite films. Therefore, four perovskite precursors are studied, some of which consist of up to 90% ethanol. All inks are developed to fulfill the requirements of a high-throughput deposition compatible with roll-to-roll techniques at room temperature, assisted by an air knife for instant solvent removal. Two of the inks are particularly suitable for the fabrication of high-quality and densely packed multi-crystalline (CH3 NH3 )PbI3 layers, as confirmed by numerous nanoscale spectroscopic and material characterization techniques. Additionally, large-area photoluminescence (PL) imaging is demonstrated to improve the quality of the deposited perovskite films, with a route to enhance deposition uniformity when upscaling for manufacture. The genuine potential of the developed greener perovskite inks is demonstrated with the fabrication of solar cells with power conversion efficiencies above 19.5%.

2.
Sensors (Basel) ; 19(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261641

ABSTRACT

Spatial characterisation methods for photodetectors and other optoelectronic devices are necessary for determining local performance, as well as detecting local defects and the non-uniformities of devices. Light beam induced current measurements provide local performance information about devices at their actual operating conditions. Compressed sensing current mapping offers additional specific advantages, such as high speed without the use of complicated experimental layouts or lock-in amplifiers. In this work, the signal amplification advantages of compressed sensing current mapping are presented. It is demonstrated that the sparsity of the patterns used for compressive sampling can be controlled to achieve significant signal amplification of at least two orders of magnitude, while maintaining or increasing the accuracy of measurements. Accurate measurements can be acquired even when a point-by-point scan yields high noise levels, which distort the accuracy of measurements. Pixel-by-pixel comparisons of photocurrent maps are realised using different sensing matrices and reconstruction algorithms for different samples. The results additionally demonstrate that such an optical system would be ideal for investigating compressed sensing procedures for other optical measurement applications, where experimental noise is included.

SELECTION OF CITATIONS
SEARCH DETAIL
...