Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 506-507: 201-16, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460953

ABSTRACT

High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 µg m(-3) for sulfate, 4.7 ± 0.9 µg m(-3) for organic mass and 0.5 ± 0.2 µg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport.


Subject(s)
Air Movements , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Aerosols/analysis , Chemical Phenomena , Mediterranean Sea , Meteorological Concepts , Oceans and Seas , Particulate Matter/analysis
2.
Sci Total Environ ; 470-471: 270-81, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24140698

ABSTRACT

Major gaseous and particulate pollutant levels over Europe in 2008 have been simulated using the offline-coupled WRFCMAQ chemistry and transport modeling system. The simulations are compared with surface observations from the EMEP stations, ozone (O3) soundings, ship-borne O3 and nitrogen dioxide (NO2) observations in the western Mediterranean, tropospheric NO2 vertical column densities from the SCIAMACHY instrument, and aerosol optical depths (AOD) from the AERONET. The results show that on average, surface O3 levels are underestimated by 4 to 7% over the northern European EMEP stations while they are overestimated by 7-10% over the southern European EMEP stations and underestimated in the tropospheric column (by 10-20%). Particulate matter (PM) mass concentrations are underestimated by up to 60%, particularly in southern and eastern Europe, suggesting underestimated PM sources. Larger differences are calculated for individual aerosol components, particularly for organic and elemental carbon than for the total PM mass, indicating uncertainty in the combustion sources. Better agreement has been obtained for aerosol species over urban areas of the eastern Mediterranean, particularly for nss-SO4(2), attributed to the implementation of higher quality emission inventories for that area. Simulated AOD levels are lower than the AERONET observations by 10% on average, with average underestimations of 3% north of 40°N, attributed to the low anthropogenic emissions in the model and 22% south of 40°N, suggesting underestimated natural and resuspended dust emissions. Overall, the results reveal differences in the model performance between northern and southern Europe, suggesting significant differences in the representation of both anthropogenic and natural emissions in these regions. Budget analyses indicate that O3 and peroxyacetyl nitrate (PAN) are transported from the free troposphere (FT) to the planetary boundary layer over Europe, while other species follow the reverse path and are then advected away from the source region.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Monitoring , Models, Chemical , Europe
3.
Sci Total Environ ; 424: 251-63, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22425278

ABSTRACT

A carefully designed experimental study based on the monitoring of fine airborne particles, was carried out at three different locations (suburban background, traffic-industrial, coastal background) of an urban Mediterranean area, the Athens Basin. Understanding of the PM(2.5) and PM(1) nature has an important policy implication. In total, five hundred and nineteen samples were chemically analyzed with respect to carbonaceous (organic/elemental carbon) and ionic (NH(4)(+), K(+), Mg(2+), Ca(2+), NO(3)(-), Cl(-), SO(4)(2-)) species. The dataset consists one of the very few in the Mediterranean which simultaneously deals with the carbonaceous and ionic components of fine aerosol fractions, especially for PM(1). Daily PM(2.5) averages often exceeded the E.U. limit values, with their mass being mainly composed of PM(1). The most important constituents of secondary particles were SO(4)(2-) and organic carbon, with both accounting for 56.4%-64.3% and 60.5%-62.3% of the total PM(2.5) and PM(1) mass, respectively. Regional sources, marine/crustal elements, combustion sources and traffic were indicated by factor analysis as the greatest contributors to the mass of both PM(2.5) and PM(1) fractions, accounting for 85.3% and 83.6%, respectively of the total variance in the system. It is worthy to note, the key role of the prevailing atmospheric conditions to the configuration of the obtained picture of the particulate pollution.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , Particle Size , Particulate Matter/analysis , Chromatography, Ion Exchange , Cities , Environmental Monitoring , Greece , Ions/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...