Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(2): 554-564, 2024 02.
Article in English | MEDLINE | ID: mdl-38103646

ABSTRACT

BACKGROUND: Protein digestion and amino acid absorption appear compromised in critical illness. The provision of enteral feeds with free amino acids rather than intact protein may improve postprandial amino acid availability. OBJECTIVE: Our objective was to quantify the uptake of diet-derived phenylalanine after the enteral administration of intact protein compared with an equivalent amount of free amino acids in critically ill patients. METHODS: Sixteen patients who were mechanically ventilated in intensive care unit (ICU) at risk of malabsorption received a primed continuous infusion of L-[ring-2H5]-phenylalanine and L-[ring-3,5-2H2]-tyrosine after an overnight fast. Patients were randomly allocated to receive 20 g intrinsically L-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of amino acids labeled with free L-[1-13C]-phenylalanine via a nasogastric tube over a 2-h period. Protein digestion and amino acid absorption kinetics and whole-body protein net balance were assessed throughout a 6-h period. RESULTS: After enteral nutrient infusion, both plasma phenylalanine and leucine concentrations increased (P-time < 0.001), with a more rapid and greater rise after free amino acid compared with intact protein administration (P-time × treatment = 0.003). Diet-derived phenylalanine released into the circulation was 25% greater after free amino acids compared with intact protein administration [68.7% (confidence interval {CI}: 62.3, 75.1%) compared with 43.8% (CI: 32.4, 55.2%), respectively; P < 0.001]. Whole-body protein net balance became positive after nutrient administration (P-time < 0.001) and tended to be more positive after free amino acid in provision (P-time × treatment = 0.07). CONCLUSIONS: The administration of free amino acids as opposed to intact protein further increases postprandial plasma amino acid availability in critically ill patients, allowing more diet-derived phenylalanine to become available to peripheral tissues. This trial was registered at clinicaltrials.gov as NCT04791774.


Subject(s)
Amino Acids , Critical Illness , Humans , Critical Illness/therapy , Dietary Proteins , Muscle Proteins/metabolism , Phenylalanine , Postprandial Period
2.
J Nutr ; 147(12): 2252-2261, 2017 12.
Article in English | MEDLINE | ID: mdl-28855419

ABSTRACT

Background: The loss of skeletal muscle mass with aging has been attributed to the blunted anabolic response to protein intake. Presleep protein ingestion has been suggested as an effective strategy to compensate for such anabolic resistance.Objective: We assessed the efficacy of presleep protein ingestion on dietary protein digestion and absorption kinetics and overnight muscle protein synthesis rates in older men.Methods: In a randomized, double-blind, parallel design, 48 older men (mean ± SEM age: 72 ± 1 y) ingested 40 g casein (PRO40), 20 g casein (PRO20), 20 g casein plus 1.5 g leucine (PRO20+LEU), or a placebo before sleep. Ingestion of intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled protein was combined with intravenous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions during sleep. Muscle and blood samples were collected throughout overnight sleep.Results: Exogenous phenylalanine appearance rates increased after protein ingestion, but to a greater extent in PRO40 than in PRO20 and PRO20+LEU (P < 0.05). Overnight myofibrillar protein synthesis rates (based on l-[ring-2H5]-phenylalanine) were 0.033% ± 0.002%/h, 0.037% ± 0.003%/h, 0.039% ± 0.002%/h, and 0.044% ± 0.003%/h in placebo, PRO20, PRO20+LEU, and PRO40, respectively, and were higher in PRO40 than in placebo (P = 0.02). Observations were similar based on l-[1-13C]-leucine tracer (placebo: 0.047% ± 0.004%/h and PRO40: 0.058% ± 0.003%/h, P = 0.08). More protein-derived amino acids (l-[1-13C]-phenylalanine) were incorporated into myofibrillar protein in PRO40 than in PRO20 (0.033 ± 0.002 and 0.019 ± 0.002 MPE, respectively, P < 0.001) and tended to be higher than in PRO20+LEU (0.025 ± 0.002 MPE, P = 0.06).Conclusions: Protein ingested before sleep is properly digested and absorbed throughout the night, providing precursors for myofibrillar protein synthesis during sleep in healthy older men. Ingestion of 40 g protein before sleep increases myofibrillar protein synthesis rates during overnight sleep. These findings provide the scientific basis for a novel nutritional strategy to support muscle mass preservation in aging and disease. This trial was registered at www.trialregister.nl as NTR3885.


Subject(s)
Dietary Proteins/administration & dosage , Muscle Proteins/biosynthesis , Sleep/physiology , Aged , Double-Blind Method , Gene Expression Regulation/drug effects , Humans , Male
3.
Am J Clin Nutr ; 105(2): 332-342, 2017 02.
Article in English | MEDLINE | ID: mdl-27903518

ABSTRACT

BACKGROUND: Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. OBJECTIVE: We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. DESIGN: Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m2): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg-1 · d-1; n = 12) or a HIGH PRO diet (1.5 g · kg-1 · d-1; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions and ingested 25 g intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. RESULTS: Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). CONCLUSION: Habituation to LOW PRO (0.7 g · kg-1 · d-1) compared with HIGH PRO (1.5 g · kg-1 · d-1) augments the postprandial availability of dietary protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842.


Subject(s)
Dietary Proteins/administration & dosage , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Absorptiometry, Photon , Aged , Blood Glucose/metabolism , Body Mass Index , Diet, Protein-Restricted , Fasting , Humans , Insulin/blood , Leucine/blood , Male , Middle Aged , Phenylalanine/blood , Postprandial Period , Protein Biosynthesis , Whey Proteins/administration & dosage , Whey Proteins/analysis
4.
J Nutr ; 146(7): 1307-14, 2016 07.
Article in English | MEDLINE | ID: mdl-27281811

ABSTRACT

BACKGROUND: The age-related decline in skeletal muscle mass is partly attributed to anabolic resistance to food intake. Dietary protein ingestion before sleep could be used as a nutritional strategy to compensate for anabolic resistance. OBJECTIVE: The present study assessed whether physical activity performed in the evening can augment the overnight muscle protein synthetic response to presleep protein ingestion in older men. METHODS: In a parallel group design, 23 healthy older men (mean ± SEM age: 71 ± 1 y) were randomly assigned to ingest 40 g protein intrinsically labeled with l-[1-(13)C]-phenylalanine and l-[1-(13)C]-leucine before going to sleep with (PRO+EX) or without (PRO) performing physical activity earlier in the evening. Overnight protein digestion and absorption kinetics and myofibrillar protein synthesis rates were assessed by combining primed, continuous infusions of l-[ring-(2)H5]-phenylalanine, l-[1-(13)C]-leucine, and l-[ring-(2)H2]-tyrosine with the ingestion of intrinsically labeled casein protein. Muscle and blood samples were collected throughout overnight sleep. RESULTS: Protein ingested before sleep was normally digested and absorbed, with 54% ± 2% of the protein-derived amino acids appearing in the circulation throughout overnight sleep. Overnight myofibrillar protein synthesis rates were 31% (0.058% ± 0.002%/h compared with 0.044% ± 0.003%/h; P < 0.01; based on l-[ring-(2)H5]-phenylalanine) and 27% (0.074% ± 0.004%/h compared with 0.058% ± 0.003%/h; P < 0.01; based on l-[1-(13)C]-leucine) higher in the PRO+EX than in the PRO treatment. More dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO+EX than in PRO treatment (0.042 ± 0.002 compared with 0.033 ± 0.002 mole percent excess; P < 0.05). CONCLUSIONS: Physical activity performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo muscle protein synthesis during overnight sleep in older men. This trial was registered at Nederlands Trial Register as NTR3885.


Subject(s)
Dietary Proteins/administration & dosage , Exercise/physiology , Gene Expression Regulation/physiology , Muscle Proteins/metabolism , Sleep/physiology , Aged , Amino Acids , Carbon Isotopes , Dietary Supplements , Digestion , Humans , Male , Muscle Proteins/genetics , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...