Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; : 142760, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969229

ABSTRACT

The biochar-enabled advanced reduction process (ARP) was developed for enhanced sorption (by biochar) and destruction of PFAS (by ARP) in water. First, the biochar (BC) was functionalized by iron oxide (Fe3O4), zero valent iron (ZVI), and chitosan (chi) to produce four biochars (BC, Fe3O4-BC, ZVI-chi-BC, and chi-BC) with improved physicochemical properties (specific surface area, pore structure, hydrophobicity, and surface functional groups). Batch sorption experimental results revealed that compared to unmodified biochar, all modified biochars showed greater sorption efficiency, and the chi-BC performed the best for PFAS sorption. The chi-BC was then selected to facilitate reductive destruction and defluorination of PFAS in water by ARP in the UV-sulfite system. Adding chi-BC in UV-sulfite ARP system significantly enhanced both degradation and defluorination efficiencies of PFAS (up to ∼100% degradation and ∼85% defluorination efficiencies). Radical analysis using electron paramagnetic resonance (EPR) spectroscopy showed that sulfite radicals dominated at neutral pH (7.0), while hydrated electrons (eaq-) were abundant at higher pH (11) for the efficient destruction of PFAS in the ARP system. Our findings elucidate the synergies of biochar and ARP in enhancing PFAS sorption and degradation, providing insights into PFAS reductive destruction and defluorination by different reducing radical species at varying pHs.

2.
Bioresour Technol ; 398: 130517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437961

ABSTRACT

The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether ß-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.


Subject(s)
Benzaldehydes , Cobalt , Nickel , Oxides , Plant Oils , Polyphenols , Zirconium , Lignin , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...