Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4110, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750024

ABSTRACT

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3' end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.


Subject(s)
Polyadenylation , RNA Precursors , RNA Splicing , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Nucleotide Motifs , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
J Infect Dis ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526342

ABSTRACT

In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E. coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E. coli (EAEC)-specific virulence factors. Here, we identified an E. coli O104:H4 isolate that carried a single nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E. coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E. coli O104:H4 virulence, primarily through an AggR-dependent mechanism.

3.
Nucleic Acids Res ; 52(D1): D1018-D1023, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37850641

ABSTRACT

The usage of alternative terminal exons results in messenger RNA (mRNA) isoforms that differ in their 3' untranslated regions (3' UTRs) and often also in their protein-coding sequences. Alternative 3' UTRs contain different sets of cis-regulatory elements known to regulate mRNA stability, translation and localization, all of which are vital to cell identity and function. In previous work, we revealed that ∼25 percent of the experimentally observed RNA 3' ends are located within regions currently annotated as intronic, indicating that many 3' end isoforms remain to be uncovered. Also, the inclusion of not yet annotated terminal exons is more tissue specific compared to the already annotated ones. Here, we present the single cell-based Terminal Exon Annotation database (scTEA-db, www.scTEA-db.org) that provides the community with 12 063 so far not yet annotated terminal exons and associated transcript isoforms identified by analysing 53 069 publicly available single cell transcriptomes. Our scTEA-db web portal offers an array of features to find and explore novel terminal exons belonging to 5538 human genes, 110 of which are known cancer drivers. In summary, scTEA-db provides the foundation for studying the biological role of large numbers of so far not annotated terminal exon isoforms in cell identity and function.


Subject(s)
Alternative Splicing , Databases, Genetic , Gene Expression Profiling , Single-Cell Analysis , Humans , 3' Untranslated Regions/genetics , Base Sequence , Exons/genetics , Protein Isoforms/genetics , Transcriptome/genetics
4.
Nat Commun ; 14(1): 4854, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563174

ABSTRACT

Neurogenesis has been studied extensively in the ectoderm, from which most animals generate the majority of their neurons. Neurogenesis from non-ectodermal tissue is, in contrast, poorly understood. Here we use the cnidarian Nematostella vectensis as a model to provide new insights into the molecular regulation of non-ectodermal neurogenesis. We show that the transcription factor NvPrdm14d is expressed in a subpopulation of NvSoxB(2)-expressing endodermal progenitor cells and their NvPOU4-expressing progeny. Using a new transgenic reporter line, we show that NvPrdm14d-expressing cells give rise to neurons in the body wall and in close vicinity of the longitudinal retractor muscles. RNA-sequencing of NvPrdm14d::GFP-expressing cells and gene knockdown experiments provide candidate genes for the development and function of these neurons. Together, the identification of a population of endoderm-specific neural progenitor cells and of previously undescribed putative motoneurons in Nematostella provide new insights into the regulation of non-ectodermal neurogenesis.


Subject(s)
Neural Stem Cells , Sea Anemones , Animals , Ectoderm , Neurogenesis/genetics , Sea Anemones/genetics , Animals, Genetically Modified , Gene Expression Regulation, Developmental
5.
Bioeng Transl Med ; 8(4): e10425, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476059

ABSTRACT

Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.

6.
Nat Commun ; 13(1): 465, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075108

ABSTRACT

Chromatin regulation is a key process in development but its contribution to the evolution of animals is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in a cell/tissue-specific manner. Using the cnidarian Nematostella vectensis as a basal metazoan model, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that NvLsd1 expression is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to developmental abnormalities. This includes the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, as a result of a cell-autonomous requirement for NvLsd1. Together this suggests that the integration of chromatin modifying proteins into developmental regulation predates the split of the cnidarian and bilaterian lineages and constitutes an ancient feature of animal development.


Subject(s)
Cell Differentiation , Histone Demethylases/metabolism , Neurons/cytology , Neurons/enzymology , Sea Anemones/enzymology , Animals , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Developmental , Histone Demethylases/genetics , Neurons/metabolism , Sea Anemones/embryology , Sea Anemones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...