Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Foods ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928879

ABSTRACT

The metabolic needs of the human body and preventing infections require a diet with sufficient amounts of essential nutrients. This study aimed to investigate the importance of Baobab (Adansonia digitata L.) dried leaves as a healthy food source by determining the content of macro and trace elements in different habitats and regions. This study was conducted in Sudan and covered three different habitats, wetland (W), plainland (P), and mountain (M), in two regions (Blue Nile and Kordofan). The dry matter (DM) of Baobab leaves was considered for analyzed menials, and the results showed that the mean values were significantly affected by habitats where Baobab trees grew. The highest contents of potassium K (1653 ± 34 mg/100 g) and sodium (Na) 7.67 ± 1.18 mg/100 g were found in the W zone, whereas the highest contents of calcium (Ca) 2903 ± 187 mg/100 g and magnesium (Mg) 529 ± 101 mg/100 g were detected in the M and P zones, respectively. In addition, the two regions showed significant differences in trace and macro elements, i.e., higher levels of iron (Fe) 17.17 ± 2.76 mg/100 g and magnesium (556 ± 55 mg/100 g) were found in the Kordofan region while higher levels of zinc (Zn) 2.548 ± 0.55 mg/100 g and calcium (2689 ± 305 mg/100) were in the Blue Nile region. These varying amounts of elements can be used in our daily diets because of their potentially healthy effects, especially in areas where access to nutrient-rich foods is limited.

2.
Ultrason Sonochem ; 106: 106894, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729035

ABSTRACT

Piper betel contains phytochemicals with diverse pharmacological effects. The objective of this study was to enhance the extraction efficiency of phytochemicals and the chlorophyll content using ultrasonication. The Box-Behnken design was employed to optimize the time (10, 20, 30 min), temperature (20, 30, and 40 °C), and solid-solvent ratio (1:10, 1:20, 1:30) by utilizing response surface methods with three independent variables. Multiple parameters, including extract yield, total phenol, total flavonoid, antioxidant activity, and chlorophyll content were used to optimize the conditions. The linear relationship between power intensity and responses was determined to be statistically significant, with a p-value less than 0.01. The interaction effect of temperature, time, and ratio of solid solvent was shown to be statistically significant (p < 0.05) for all the obtained results. The optimal parameters for achieving the highest extract yield were as follows: a temperature of 40 °C, a sonication time of 30 min, and a solid solvent ratio of 1:10. These conditions result in an extract yield of 21.99 %, a total flavonoid content of 44.97 mg/GAE, a total phenolic content of 185.05 mg/GAE, a DPPH scavenging activity of 99.1 %, and a chlorophyll content of 49.95 mg/ml. This study highlights the significance of customized extraction methodologies for optimizing the bioactive capacity of phytochemicals derived from betel leaves. The elucidation of extraction parameters and the resultant phytochemical profiles serves as a fundamental framework for the advancement of innovative pharmaceuticals and nutraceuticals, capitalizing on the therapeutic attributes of this traditional medicinal botanical.


Subject(s)
Phytochemicals , Ultrasonic Waves , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Antioxidants/isolation & purification , Antioxidants/chemistry , Chemical Fractionation/methods , Temperature , Sonication/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Flavonoids/isolation & purification , Flavonoids/analysis , Piper betle/chemistry , Chlorophyll/isolation & purification , Chlorophyll/analysis
3.
Plants (Basel) ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38475421

ABSTRACT

Aonla, commonly known as Indian gooseberry (Phyllanthus emblica), is a plant native to India with various therapeutic and dietary benefits. This review covers the taxonomical, morphological, and species-level classifications of aonla fruit, including its flower biology, maturation, harvesting, and yield metrics. It also discusses the nutritional, physico-chemical, and phytochemical characteristics and the total antioxidant and antimicrobial activities and mineral compositions of several aonla fruit cultivars. Additionally, the health benefits of aonla are reviewed, including its analgesic, antipyretic, antioxidative, anti-inflammatory, anti-aging, ulcerogenic, chemo-protective, neuroprotective, free radical scavenging, hypoglycaemic, and immunogenic properties, which make it beneficial in the treatment and prevention of various illnesses. Further various forms of fruit extract are also considered to be beneficial for the improvement of plant and animal health. Overall, aonla is a valuable fruit with significant potential for use in improving human health.

4.
Pharmaceutics ; 16(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543285

ABSTRACT

Solid pharmaceutical formulations with class II active pharmaceutical ingredients (APIs) face dissolution challenges due to limited solubility, affecting in vivo behavior. Robust computational tools, via data mining, offer valuable insights into product performance, complementing traditional methods and aiding in scale-up decisions. This study utilizes the design of experiments (DoE) to understand fluidized hot-melt granulation manufacturing technology. Exploratory data analysis (MVDA) highlights similarities and differences in tablet manufacturability and dissolution profiles at both the lab and pilot scales. The study sought to gain insights into the application of multivariate data analysis by identifying variations among batches produced at different manufacturing scales for this technology. DoE and MVDA findings show that the granulation temperature, time, and Macrogol type significantly impact product performance. These factors, by influencing particle size distribution, become key predictors of product quality attributes such as resistance to crushing, disintegration time, and early-stage API dissolution in the profile. Software-aided data mining, with its multivariate and versatile nature, complements the empirical approach, which is reliant on trial and error during product scale-up.

5.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399427

ABSTRACT

The current study was conducted to examine the possible advantages of Heydotis corymbosa (L.) Lam. extract nanogel as a perspective for enhanced permeation and extended skin deposition in psoriasis-like dermatitis. Optimised nanophytosomes (NPs) were embedded in a pluronic gel base to obtain nanogel and tested ex vivo (skin penetration and dermatokinetics) and in vivo. The optimised NPs had a spherical form and entrapment efficiency of 73.05 ± 1.45% with a nanosized and zeta potential of 86.11 nm and -10.40 mV, respectively. Structural evaluations confirmed encapsulation of the drug in the NPs. Topical administration of prepared nanogel to a rat model of psoriasis-like dermatitis revealed its specific in vivo anti-psoriatic efficacy in terms of drug activity compared to the control and other formulations. Nanogel had improved skin integrity and downregulation of inflammatory cytokines. These findings suggest that developed phytoconstituent-based nanogel has the potential to alleviate psoriasis-like dermatitis with better skin retention and effectiveness.

6.
Heliyon ; 10(2): e25046, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312640

ABSTRACT

Phalsa is a tropical and subtropical fruit that is high in nutritional value and is primarily cultivated for its fruit. As, Phalsa fruit contain high number of vitamins (A and C), minerals (calcium, phosphorus, and iron), and fibre while being low in calories and fat. The fruit and seed of Phalsa contain 18 amino acids, the majority of which are aspartic acid, glutamic acid, and leucine. Based on in vivo and in vitro studies phalsa plant possess high antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic properties. However, antioxidant properties are found in the form of vitamin C, total phenolic, anthocyanin, flavonoid, and tannin. The phalsa plant's fruits and leaves have substantial anticancer action against cancer cell lines. Because of the presence of a broad range of physiologically active chemicals, investigations on phalsa plants revealed that some plant parts have radioprotective qualities. The anti-glycosidase and anti-amylase activity of aqueous fresh fruit extract was shown to be substantial. The phalsa plant contains an abundance of biologically active chemicals, allowing it to control microorganisms through a variety of processes. Phalsa methanolic leaf extract was revealed to have antimalarial and antiemetic effects. The hot and cold polysaccharide fractions extracted from the phalsa plant have potent hepatoprotective and therapeutic properties. Therefore, this review is based on the nutritional, bioactive, phytochemicals, and potential pharmacological uses of phalsa. The potential health benefits and economic potential of the phalsa berry's phytochemicals are promising areas for further study.

7.
Ultrason Sonochem ; 102: 106759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38211494

ABSTRACT

In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (XU) 150---350 W, extraction temperatures (XT) 30---70 °C, solid to solvent ratio (XS) 1:15---1:35 g/ml, and ethanol concentration (XC) 40---80 %. The range of responses total phenolic content (YP), antioxidant activity (YA), total beta carotenoid (YB) and total flavonoid content (YF) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, XU, XT, XS and XC was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of XU, XS and XC. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.


Subject(s)
Diospyros , Fruit , Fruit/chemistry , Phenols/analysis , Neural Networks, Computer , Phytochemicals/analysis
8.
Heliyon ; 10(1): e22437, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163240

ABSTRACT

Syzygium aromaticum, commonly called clove, is a culinary spice with medical uses. Clove is utilized in cosmetics, medicine, gastronomy, and agriculture due to its abundance of bioactive components such as gallic acid, flavonoids, eugenol acetate, and eugenol. Clove essential oil has been revealed to have antibacterial, antinociceptive, antibacterial activities, antifungal, and anticancerous qualities. Anti-inflammatory chemicals, including eugenol and flavonoids, are found in clove that help decrease inflammation and alleviate pain. The anti-inflammatory and analgesic qualities of clove oil have made it a popular natural cure for toothaches and gum discomfort. Due to its therapeutic potential, it has been used as a bioactive ingredient in coating fresh fruits and vegetables. This review article outlines the potential food processing applications of clove essential oil. The chemical structures of components, bioactive properties, and medicinal potential of clove essential oil, including phytochemical importance in food, have also been thoroughly addressed.

9.
Biol Trace Elem Res ; 202(5): 2367-2375, 2024 May.
Article in English | MEDLINE | ID: mdl-37642810

ABSTRACT

In this study macro, micro and trace elemental concentrations were measured in Eritrean acacia honey samples by Inductively Coupled Plasma Optical Emission Spectrometry (Al, B, C, K, Mg, Na, P and S) and Inductively Coupled Plasma Mass Spectrometry (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr and Zn). The concentration of essential elements in the examined Eritrean acacia honeys decreased in the following order: K > P > Ca > Mg > Fe > Zn > Mn > Cu > Sr > Mo. Independent samples T test was used to determine the statistically verified differences between the two regions, but there was none; however there were remarkable differences among the measured element contents of specific honey samples. Elemental concentrations of Eritrean honeys are influenced by the characteristics of the collecting area (e.g. elevation, agricultural activities, water resources).Our samples showed low essential elemental concentration; therefore the consumption of these honeys does not contribute significantly to the nutrition reference value (NRV) (around 1% of NRV). Toxic elemental concentrations were also low; thus the calculated estimated daily intakes were much lower than the tolerable daily intakes. Consumption of these honeys presents no risk for the human body.


Subject(s)
Honey , Trace Elements , Humans , Honey/analysis , Eritrea , Trace Elements/analysis , Spectrum Analysis , Agriculture
10.
Int J Pharm ; 648: 123610, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37977288

ABSTRACT

In this work, the feasibility of implementing a process analytical technology (PAT) platform consisting of Near Infrared Spectroscopy (NIR) and particle size distribution (PSD) analysis was evaluated for the prediction of granule downstream processability. A Design of Experiments-based calibration set was prepared using a fluid bed melt granulation process by varying the binder content, granulation time, and granulation temperature. The granule samples were characterized using PAT tools and a compaction simulator in the 100-500 kg load range. Comparing the systematic variability in NIR and PSD data, their complementarity was demonstrated by identifying joint and unique sources of variation. These particularities of the data explained some differences in the performance of individual models. Regarding the fusion of data sources, the input data structure for partial least squares (PLS) based models did not significantly impact the predictive performance, as the root mean squared error of prediction (RMSEP) values were similar. Comparing PLS and artificial neural network (ANN) models, it was observed that the ANNs systematically provided superior model performance. For example, the best tensile strength, ejection stress, and detachment stress prediction with ANN resulted in an RMSEP of 0.119, 0.256, and 0.293 as opposed to the 0.180, 0.395, and 0.430 RMSEPs of the PLS models, respectively. Finally, the robustness of the developed models was assessed.


Subject(s)
Neural Networks, Computer , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Least-Squares Analysis , Calibration , Temperature
11.
Sci Rep ; 13(1): 17691, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848478

ABSTRACT

Although ground-baiting related nutrient loading has been widely studied, we do not know what proportion of these nutrients release into the water column, affecting primary production directly. We conducted short-term (24-h, 5-day) experiments at wide temperature range, in presence and absence of fish using fish meal-based (FM-GB) and plant-based groundbait (PB-GB), to assess the nitrogen (N) and phosphorus (P) fluxes from GB into the water column. Nitrogen release from unconsumed FM-GB was negligible in the first 3 days, then increased abruptly, releasing 32% of its total N content by the fifth day. In contrast, PB-GB acted as temporary sink for inorganic N forms. Considerable (18-21%) inorganic P release was observed in both GB types in the first twelve hours. Consumed GBs induced considerable inorganic N release and its rate increased with temperature. Particulate forms predominated the released N in PB-GB, suggesting impaired digestion. Phosphorus-dominated by particulate forms-release was similar or lower than in unconsumed GB. Based on our results, excessive use of GB-when high amount of it remains unconsumed-can enhance eutrophication in P-limited ecosystems. Although less digestible GBs may have less abrupt effect on the primary production, undigested nutrients remain unavailable for removal through fish harvest.


Subject(s)
Water Pollutants, Chemical , Water , Animals , Ecosystem , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Nutrients , Nitrogen/analysis , Eutrophication , Environmental Monitoring
12.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687076

ABSTRACT

Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.


Subject(s)
Caesalpinia , Chalcone , Antioxidants/pharmacology , Beverages , Coloring Agents , Meat
13.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570594

ABSTRACT

This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.


Subject(s)
Flavanones , Flavones , Animals , Flavanones/chemistry , Glycosides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
14.
Data Brief ; 49: 109354, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37448737

ABSTRACT

This paper presents geospatial datasets, figures, and tables illustrating i) the location and total area of fish farms under cultivation; and ii) the spatiotemporal dynamics of reed cover in Hungarian fishponds generated from the published study of Sharma et al., [1]. Preliminary data for fish farm locations were obtained from the Institute of Agricultural Economics (AKI), followed by significant refinement based on high-resolution Google Earth Pro-imagery. The fishpond area dataset was validated against the values reported in annual statistical reports on aquaculture. In order to map reed vegetation freely available Sentinel-2 imagery (between 2017 and 2021) was accessed from the Copernicus Open Access Hub [2] and emergent macrophyte cover was classified using the NDVI-based threshold values [1]. Scientists, policymakers, and fish farmers can all benefit from such geospatial datasets. It could be used to monitor the extent of fishponds in Hungary and to design farm-level reed management plans to optimize the provision of ecological and production services.

15.
Molecules ; 28(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37375319

ABSTRACT

Poniol (Flacourtia jangomas) has beneficial health effects due to its high polyphenolic and good antioxidant activity content. This study aimed to encapsulate the Poniol fruit ethanolic extract to the sucrose matrix using the co-crystallization process and analyze the physicochemical properties of the co-crystalized product. The physicochemical property characterization of the sucrose co-crystallized with the Poniol extract (CC-PE) and the recrystallized sucrose (RC) samples was carried out through analyzing the total phenolic content (TPC), antioxidant activity, loading capacity, entrapment yield, bulk and traped densities, hygroscopicity, solubilization time, flowability, DSC, XRD, FTIR, and SEM. The result revealed that the CC-PE product had a good entrapment yield (76.38%) and could retain the TPC (29.25 mg GAE/100 g) and antioxidant properties (65.10%) even after the co-crystallization process. Compared to the RC sample, the results also showed that the CC-PE had relatively higher flowability and bulk density, lower hygroscopicity, and solubilization time, which are desirable properties for a powder product. The SEM analysis showed that the CC-PE sample has cavities or pores in the sucrose cubic crystals, which proposed that the entrapment was better. The XRD, DSC, and FTIR analyses also showed no changes in the sucrose crystal structure, thermal properties, and functional group bonding structure, respectively. From the results, we can conclude that co-crystallization increased sucrose's functional properties, and the co-crystallized product can be used as a carrier for phytochemical compounds. The CC-PE product with improved properties can also be utilized to develop nutraceuticals, functional foods, and pharmaceuticals.


Subject(s)
Antioxidants , Fruit , Crystallization/methods , Phenols , Sucrose , Plant Extracts/chemistry
16.
Ultrason Sonochem ; 96: 106425, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37141660

ABSTRACT

In the present investigation, the cape gooseberry (Physalis peruviana L.) was preserved by the application of osmotic dehydration (sugar solution) with ultrasonication. The experiments were planned based on central composite circumscribed design with four independent variables and four dependent variables, which yielded 30 experimental runs. The four independent variables used were ultrasonication power (XP) with a range of 100-500 W, immersion time (XT) in the range of 30-55 min, solvent concentration (XC) of 45-65 % and solid to solvent ratio (XS) with range 1:6-1:14 w/w. The effect of these process parameters on the responses weight loss (YW), solid gain (YS), change in color (YC) and water activity (YA) of ultrasound assisted osmotic dehydration (UOD) cape gooseberry was studied by using response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). The second order polynomial equation successfully modeled the data with an average coefficient of determination (R2) was found to be 0.964 for RSM. While for the ANFIS modeling, Gaussian type membership function (MF) and linear type MF was used for the input and output, respectively. The ANFIS model formed after 500 epochs and trained by hybrid model was found to have average R2 value of 0.998. On comparing the R2 value the ANFIS model found to be superior over RSM in predicting the responses of the UOD cape gooseberry process. So, the ANFIS was integrated with a genetic algorithm (GA) for optimization with the aim of maximum YW and minimum YS, YC and YA. Depending on the higher fitness value of 3.4, the integrated ANFIS-GA picked the ideal combination of independent variables and was found to be XP of 282.434 W, XT of 50.280 min, XC of 55.836 % and XS of 9.250 w/w. The predicted and experimental values of response at optimum condition predicted by integrated ANN-GA were in close agreement, which was evident by the relative deviation less than 7%.

17.
Foods ; 12(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36673447

ABSTRACT

Bentonite fining is one of the generally applied wine-making technological elements that may seriously affect wine components. The aim of this study was (i) to investigate the effect of 21 bentonite products on eight oenological parameters, 19 elements, 21 volatile organic compounds (VOCs) and 10 organoleptic properties of white wine; and (ii) to quantify intercorrelations among the parameters separately for each of the four quality attributes. Among oenological parameters, sugar, acidity, malic-, lactic-, citric acid and total phenol contents were significant among several bentonite products. The amounts of elements were the lowest in the control wine treatments (with exceptions of, e.g., Ni and Cu); and these values were significantly different from several bentonite products. The relative presence of the VOCs was above 100% for most VOCs, but it was below 100% for 1-propanol, 4-amino-1,5-pentandioic acid and butane-dioic acid, and diethyl ester in all treatments. For organoleptic parameters, the values of clearness, colour, flavour intensity and taste persistency was the lowest in the control wine treatment, while the values of flavour character, flavour quality, taste intensity, taste character, and overall harmony were the highest for the bentonite products of AP, EBE, M-SA, EBE, EBE, respectively. Results of correlation and factor analyses showed strong intercorrelative effects of bentonite fining on the four quality attributes. In conclusion, this study can help in the proper choice of a specific bentonite product in relation to complexity effects of bentonite fining.

18.
Sensors (Basel) ; 22(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36433226

ABSTRACT

Today, integration into automated systems has become a priority in the development of remote sensing sensors carried on drones. For this purpose, the primary task is to achieve real-time data processing. Increasing sensor resolution, fast data capture and the simultaneous use of multiple sensors is one direction of development. However, this poses challenges on the data processing side due to the increasing amount of data. Our study intends to investigate how the running time and accuracy of commonly used image classification algorithms evolve using Altum Micasense multispectral and thermal acquisition data with GSD = 2 cm spatial resolution. The running times were examined for two PC configurations, with a 4 GB and 8 GB DRAM capacity, respectively, as these parameters are closer to the memory of NRT microcomputers and laptops, which can be applied "out of the lab". During the accuracy assessment, we compared the accuracy %, the Kappa index value and the area ratio of correct pixels. According to our results, in the case of plant cover, the Spectral Angles Mapper (SAM) method achieved the best accuracy among the validated classification solutions. In contrast, the Minimum Distance (MD) method achieved the best accuracy on water surface. In terms of temporality, the best results were obtained with the individually constructed decision tree classification. Thus, it is worth developing these two directions into real-time data processing solutions.


Subject(s)
Algorithms , Telemetry
19.
Front Bioeng Biotechnol ; 10: 935902, 2022.
Article in English | MEDLINE | ID: mdl-35992333

ABSTRACT

High-yield citric acid production by the filamentous Ascomycete fungus Aspergillus niger requires a combination of extreme nutritional conditions, of which maintaining a low manganese (II) ion concentration (<5 µg L-1) is a key feature. Technical-scale production of citric acid predominantly uses stainless-steel tank fermenters, but glass bioreactors used for strain improvement and manufacturing process development also contain stainless steel components, in which manganese is an essential alloying element. We show here that during citric acid fermentations manganese (II) ions were leaching from the bioreactor into the growth media, resulting in altered fungal physiology and morphology, and significant reduction of citric acid yields. The leaching of manganese (II) ions was dependent on the fermentation time, the acidity of the culture broth and the sterilization protocol applied. Manganese (II) ion leaching was partially mitigated by electrochemical polishing of stainless steel components of the bioreactor. High concentrations of manganese (II) ions during early cultivation led to a reduction in citric acid yield. However, the effect of manganese (II) ions on the reduction of citric acid yield diminished towards the second half of the fermentation. Since maintaining low concentrations of manganese (II) ions is costly, the results of this study can potentially be used to modify protocols to reduce the cost of citric acid production.

20.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956791

ABSTRACT

The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.


Subject(s)
Drug Industry , Technology, Pharmaceutical , Drug Industry/organization & administration , Pharmaceutical Preparations/standards , Quality Control , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/organization & administration , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...