Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 54: 102385, 2022 08.
Article in English | MEDLINE | ID: mdl-35803124

ABSTRACT

Peroxidasin (PXDN) is involved in the crosslinking of collagen IV, a major constituent of basement membranes. Disruption of basement membrane integrity as observed in genetic alterations of collagen IV or PXDN can result in developmental defects and diverse pathologies. Hence, the study of PXDN activity in (patho)physiological contexts is highly relevant. So far, measurements of PXDN activity have been reported from purified proteins, cell lysates and de-cellularized extracellular matrix. Here, for the first time we report the measurement of PXDN activity in live cells using the Amplex Red assay with a signal amplifying modification. We observe that bromide addition enhances the obtained signal, most likely due to formation of HOBr. Abrogation of signal amplification by the HOBr scavenger carnosine supports this hypothesis. Both, pharmacological inhibition as well as complementary genetic approaches confirm that the obtained signal is indeed related to PXDN activity. We validate the modified assay by investigating the effect of Brefeldin A, to inhibit the secretory pathway and thus the access of PXDN to the extracellular Amplex Red dye. Our method opens up new possibilities to investigate the activity of PXDN in (patho)physiological contexts.


Subject(s)
Bromides , Extracellular Matrix Proteins , Collagen Type IV/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Peroxidase/metabolism , Peroxidasin
2.
Antioxidants (Basel) ; 10(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34679700

ABSTRACT

Peroxidasin (PXDN) and peroxidasin-like protein (PXDNL) are members of the peroxidase-cyclooxygenase superfamily. PXDN functions in basement membrane synthesis by forming collagen IV crosslinks, while the function of PXDNL remains practically unknown. In this work, we characterized the post-translational proteolytic processing of PXDN and PXDNL. Using a novel knock-in mouse model, we demonstrate that the proteolytic cleavage of PXDN occurs in vivo. With the help of furin-specific siRNA we also demonstrate that the proprotein-convertase, furin participates in the proteolytic processing of PXDN. Furthermore, we demonstrate that only the proteolytically processed PXDN integrates into the extracellular matrix, highlighting the importance of the proteolysis step in PXDN's collagen IV-crosslinking activity. We also provide multiple lines of evidence for the importance of peroxidase activity in the proteolytic processing of PXDN. Finally, we show that PXDNL does not undergo proteolytic processing, despite containing sequence elements efficiently recognized by proprotein convertases. Collectively, our observations suggest a previously unknown protein quality control during PXDN synthesis and the importance of the peroxidase activity of PXDN in this process.

3.
Redox Biol ; 16: 314-321, 2018 06.
Article in English | MEDLINE | ID: mdl-29573705

ABSTRACT

Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels.


Subject(s)
Collagen Type IV/metabolism , Epithelial Cells/metabolism , Extracellular Matrix Proteins/metabolism , NADPH Oxidases/metabolism , Peroxidase/metabolism , Basement Membrane/metabolism , Catalysis , Cell Line , Dual Oxidases/metabolism , Extracellular Matrix , Humans , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Superoxides/metabolism , Peroxidasin
4.
Free Radic Biol Med ; 116: 41-49, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29278739

ABSTRACT

The p22phox protein is an essential component of the phagocytic- and inner ear NADPH oxidases but its relationship to other Nox proteins is less clear. We have studied the role of p22phox in the TGF-ß1-stimulated H2O2 production of primary human and murine fibroblasts. TGF-ß1 induced H2O2 release of the examined cells, and the response was dependent on the expression of both Nox4 and p22phox. Interestingly, the p22phox protein was present in the absence of any detectable Nox/Duox expression, and the p22phox level was unaffected by TGF-ß1. On the other hand, Nox4 expression was dependent on the presence of p22phox, establishing an asymmetrical relationship between the two proteins. Nox4 and p22phox proteins localized to the endoplasmic reticulum and their distribution was unaffected by TGF-ß1. We used a chemically induced protein dimerization method to study the orientation of p22phox and Nox4 in the endoplasmic reticulum membrane. This technique is based on the rapamycin-mediated heterodimerization of the mammalian FRB domain with the FK506 binding protein. The results of these experiments suggest that the enzyme complex produces H2O2 into the lumen of the endoplasmic reticulum, indicating that Nox4 contributes to the development of the oxidative milieu within this organelle.


Subject(s)
Cytochrome b Group/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/physiology , Multiprotein Complexes/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Animals , Cytochrome b Group/genetics , Dimerization , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , Mice , Mice, Mutant Strains , NADPH Oxidase 4/genetics , NADPH Oxidases/genetics , Oxidation-Reduction , Protein Binding , Reactive Oxygen Species/metabolism , Sirolimus/metabolism , Transforming Growth Factor beta1/immunology
5.
Free Radic Biol Med ; 83: 273-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25708780

ABSTRACT

Basement membranes provide structural support and convey regulatory signals to cells in diverse tissues. Assembly of collagen IV into a sheet-like network is a fundamental mechanism during the formation of basement membranes. Peroxidasin (PXDN) was recently described to catalyze crosslinking of collagen IV through the formation of sulfilimine bonds. Despite the significance of this pathway in tissue genesis, our understanding of PXDN function is far from complete. In this work we demonstrate that collagen IV crosslinking is a physiological function of mammalian PXDN. Moreover, we carried out structure-function analysis of PXDN to gain a better insight into its role in collagen IV synthesis. We identify conserved cysteines in PXDN that mediate the oligomerization of the protein into a trimeric complex. We also demonstrate that oligomerization is not an absolute requirement for enzymatic activity, but optimal collagen IV coupling is only catalyzed by the PXDN trimers. Localization experiments of different PXDN mutants in two different cell models revealed that PXDN oligomers, but not monomers, adhere on the cell surface in "hot spots," which represent previously unknown locations of collagen IV crosslinking.


Subject(s)
Antigens, Neoplasm/chemistry , Antigens, Neoplasm/metabolism , Basement Membrane/metabolism , Collagen Type IV/chemistry , Extracellular Matrix Proteins/physiology , Extracellular Matrix/metabolism , Peroxidase/physiology , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Animals , Antigens, Neoplasm/genetics , Apoptosis , Blotting, Western , Catalysis , Cell Proliferation , Cells, Cultured , Collagen Type IV/metabolism , Cross-Linking Reagents/pharmacology , Female , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Immunoprecipitation , Mice , Mice, Knockout , Peroxidases , Protein Conformation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-1/genetics , Reverse Transcriptase Polymerase Chain Reaction , Structure-Activity Relationship , Peroxidasin
6.
Cardiovasc Res ; 101(3): 393-9, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24253521

ABSTRACT

AIMS: Peroxidases serve diverse biological functions including well-characterized activities in host defence and hormone biosynthesis. More recently, peroxidasin (PXDN) was found to be involved in collagen IV cross-linking in the extracellular matrix (ECM). The aim of this study was to characterize the expression and function of peroxidasin-like protein (PXDNL), a previously unknown peroxidase homologue. METHODS AND RESULTS: We cloned the PXDNL cDNA from the human heart and identified its expression pattern by northern blot, in situ hybridization, and immunohistochemistry. PXDNL is expressed exclusively in the heart and it has evolved to lose its peroxidase activity. The protein is produced by cardiomyocytes and localizes to cell-cell junctions. We also demonstrate that PXDNL can form a complex with PXDN and antagonizes its peroxidase activity. Furthermore, we show an increased expression of PXDNL in the failing myocardium. CONCLUSION: PXDNL is a unique component of the heart with a recently evolved inactivation of peroxidase function. The elevation of PXDNL levels in the failing heart may contribute to ECM dysregulation due to its antagonism of PXDN function.


Subject(s)
Extracellular Matrix Proteins/pharmacology , Gene Expression Regulation , Heart/drug effects , Peroxidase/pharmacology , Animals , Cells, Cultured , Extracellular Matrix/metabolism , Heart Failure/metabolism , Humans , In Situ Hybridization/methods , Oxidation-Reduction/drug effects , RNA, Messenger/metabolism , Peroxidasin
SELECTION OF CITATIONS
SEARCH DETAIL
...