Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Proteome Res ; 8(2): 513-20, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19099507

ABSTRACT

Multidrug resistance of murine leukemic cell line L1210/VCR (R), obtained by adaptation of parental L1210 cells (S) on vincristine, is associated with overexpression of P glycoprotein (P-gp, the ATP-dependent drug efflux pump). Previously, we found that cytochemical staining of negatively charged cell surface binding sites (probably sialic acid) by ruthenium red (RR) revealed a compact layer of RR bound to the external coat of S cells. This is in contrast to R cells and L1210/VCR cells cultured in the presence of vincristine during the last cultivation prior to the experiment (V cells), where the RR layer was either reduced or absent. In the current paper, we observed differences in the interactions of S, R and V cells with Concanavalin A (ConA) and tomato lectin (lycopersicum esculentum agglutinin, LEA). ConA bound and induced cell damage more effectively in S cells than in R or V cells. Both of these effects could be prevented by methyl-manopyranose, but not by N-acetylglucosamine. In contrast, LEA lectin preferentially bound to R and V cells. While LEA agglutinated cells more effectively than ConA, it did not cause cell damage comparable to ConA. Binding of LEA to the cell surface could be prevented by chitooligosaccharides. Both LEA and ConA failed to identify P-gp in lectin blots. Thus, changes in ConA and LEA interactions are not caused by massive expression of P-gp in the plasma membrane and the consequent exposure of the inner saccharides to the external side of the plasma membrane.Taken together, the above facts suggest that S cells differ from R and V cells in the composition of cell surface glycosides not directly linked to P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor/drug effects , Cell Membrane , Polysaccharides , Vincristine/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Survival , Concanavalin A/metabolism , Drug Resistance, Multiple/drug effects , Mice , Plant Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
2.
Z Naturforsch C J Biosci ; 63(11-12): 873-8, 2008.
Article in English | MEDLINE | ID: mdl-19227837

ABSTRACT

The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mM Ni2+. NaCl addition decreased both the resistance of the yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions.


Subject(s)
Candida/metabolism , Nickel/metabolism , Pichia/metabolism , Soil Microbiology , Acclimatization , Adsorption , Basidiomycota/growth & development , Basidiomycota/metabolism , Candida/growth & development , Cytosol/metabolism , Fungal Proteins/metabolism , Metals, Heavy/metabolism , Pichia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL