Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Neural Transm (Vienna) ; 131(7): 791-797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592459

ABSTRACT

INTRODUCTION: Hypokinetic dysarthria (HD) is a common motor speech symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated short-term effects of transcranial direct current stimulation (tDCS) on HD in PD using acoustic analysis of speech. Based on our previous studies we focused on stimulation of the right superior temporal gyrus (STG) - an auditory feedback area. METHODS: In 14 PD patients with HD, we applied anodal, cathodal and sham tDCS to the right STG using a cross-over design. A protocol consisting of speech tasks was performed prior to and immediately after each stimulation session. Linear mixed models were used for the evaluation of the effects of each stimulation condition on the relative change of acoustic parameters. We also performed a simulation of the mean electric field induced by tDCS. RESULTS: Linear mixed model showed a statistically significant effect of the stimulation condition on the relative change of median duration of silences longer than 50 ms (p = 0.015). The relative change after the anodal stimulation (mean = -5.9) was significantly lower as compared to the relative change after the sham stimulation (mean = 12.8), p = 0.014. We also found a correlation between the mean electric field magnitude in the right STG and improvement of articulation precision after anodal tDCS (R = 0.637; p = 0.019). CONCLUSIONS: The exploratory study showed that anodal tDCS applied over the auditory feedback area may lead to shorter pauses in a speech of PD patients.


Subject(s)
Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Parkinson Disease/physiopathology , Pilot Projects , Male , Female , Aged , Middle Aged , Cross-Over Studies , Dysarthria/etiology , Dysarthria/therapy , Dysarthria/physiopathology , Speech/physiology , Treatment Outcome , Temporal Lobe/physiopathology
2.
Sci Total Environ ; 898: 166386, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37597564

ABSTRACT

We conducted year-long measurements of the photochemical reflectance index (PRI) and solar-induced fluorescence in the O2A oxygen band (SIFA) at a Norway spruce forest and a European beech forest to study relationships of these remote sensing variables to photosynthesis by trees in grown forest stands. Measured PRI and SIFA values were linked to changes in forest gross primary productivity (GPP) and light-use efficiency (LUE). Changes in the shadow fraction (αS) within tree crowns influenced PRI and fluorescence signals. In the spruce forest, the quantum yield of SIFA (FYSIFA) decreased around midday together with photosynthesis and GPP. Such decreases in FYSIFA were accompanied by an increase in the αS. In the beech forest, we detected an increase in FYSIFA together with a decrease in αS in the afternoon hours. The overall sensitivity of PRI to LUE was variable according to the season, presumably influenced by complex changes in photosynthetic pigments. PRI and FYSIFA showed weak correlations with canopy LUE; however, when considered together, the correlation was strengthened (R2 was 0.63 and 0.34 in spruce and beech forest, respectively). Our model predicting LUE dynamics includes a diurnal minimum of PRI and canopy αS to make allowances for seasonal changes in photosynthetic pigments and for diurnal variability of the shadow fraction in forests. The incorporation of these correcting factors allowed us to estimate LUE at R2 = 0.68 (spruce) and 0.53 (beech). The modeling equations appeared sensitive to the absorbed photosynthetically active radiation (APAR), but less sensitive to the GPP of these forests. Substituting pigments correction with introducing differential PRI (ΔPRI) into the model did not significantly improve the LUE estimation across the season. Our results show that the joint use of PRI and fluorescence improves LUE and GPP estimation accuracy in both daily and seasonal observations.


Subject(s)
Fagus , Picea , Photosynthesis , Forests , Sunlight , Trees , Seasons
3.
Sci Total Environ ; 829: 154681, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35314217

ABSTRACT

We used automated spectroradiometers to continuously monitor changes in the optical parameters of phenological and photosynthetic traits in beech and spruce forests. We examined seasonal variations in the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and solar-induced fluorescence in the oxygen A band (SIFA) that was estimated using a 3-FLD discrimination method from radiance data. The optical parameters tracked the activation and cessation of photosynthesis in spring and autumn. Data at photon fluxes >1200 µmol m-2 s-1 during extended noon hours were used to link the seasonal PRI and SIFA variations to the dynamics of photosynthesis. Seasonal PRI was significantly correlated with photosynthetic light-use efficiency (LUE) with R2 values of 0.66 and 0.48 for the measurements in beech and spruce forests, respectively. SIFA emissions were significantly correlated with the gross primary production (GPP) of the evergreen spruce forest (R2 = 0.47), but R2 was only 0.13 when measured in the beech forest. The correlations between the optical parameters and GPP or LUE, however, tended to be lower when using a dataset with constant NDVI. Introducing an equation combining NDVI, PRI, and the quantum yield of SIFA emission increased R2 for LUE estimation to 0.77 in the spruce forest and 0.63 in the beech forest. GPP was estimated from the parametric equation with improved accuracy reaching R2 = 0.53 and RMSE = 5.95 µmol CO2 m-2 s-1 in spruce forest and R2 = 0.58 and RMSE = 5.23 µmol CO2 m-2 s-1 in beech forest. Parametric equations were more efficient in estimating photosynthesis in datasets that consisted of an entire season's data. By combining NDVI, PRI and the quantum yield of SIFA, we could thus substantially improve estimations of carbon fluxes in diverse deciduous and evergreen canopies.


Subject(s)
Carbon Cycle , Carbon Dioxide , Forests , Carbon , Fagus , Fluorescence , Photosynthesis , Picea , Seasons
4.
J Exp Bot ; 64(7): 1817-27, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23564955

ABSTRACT

A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511 nm and 557 nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 µmol m(-2) s(-1). Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examined.


Subject(s)
Picea/metabolism , Plant Leaves/metabolism , Xanthophylls/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Photosynthesis/physiology , Picea/physiology , Plant Leaves/physiology
5.
Epidemiol Mikrobiol Imunol ; 61(4): 87-97, 2012 Dec.
Article in Slovak | MEDLINE | ID: mdl-23301623

ABSTRACT

The primary goal of endodontic therapy is the reduction or elimination of microorganisms and their by-products from the root canal system. Although a number of instrumentation and irrigation techniques exist, debris is often left behind in the root canal system and proper canal cleaning, shaping, and irrigation are needed to reduce significantly or sometimes even eliminate microorganisms from the canals. Residual microbes in the root canal system are the primary cause of post-treatment apical periodontitis that may persist in both poorly and properly treated cases. Apical periodontitis is a sequel to endodontic infection and manifests itself as the host defense response to microbial challenge emanating from the root canal system to the periapical tissue. It results in local inflammation, resorption of hard tissues, destruction of other periapical tissues, and eventual formation of various histopathological categories of apical periodontitis, commonly referred to as periapical lesions. When the root canal treatment is carried out properly, healing of the periapical lesion usually follows, with bone regeneration. In certain cases, post-treatment apical periodontitis still persists, the condition being commonly referred to as endodontic failure. It is widely acknowledged that such post-treatment apical periodontitis occurs when root canal treatment has not adequately controlled and eliminated the infection. However, complete elimination of microorganisms is not always achieved in clinical practice due to the anatomical complexities of root canals and consequent limitations in access by instruments and irrigants. The use of antimicrobial medication has been advocated to disinfect the root canal system. The recovery of Candida albicans and Enterococcus faecalis is common after failed root canal treatment. Therefore, when testing different antimicrobial agents for efficacy in endodontic treatment, 100% inhibition of the growth of the two microorganisms is required. The purpose of this article is to assess the antimicrobial action of intracanal medicaments and relevance of the root canal irrigation in endodontic therapy of devitalized teeth.


Subject(s)
Anti-Infective Agents/administration & dosage , Periapical Periodontitis/prevention & control , Root Canal Irrigants/administration & dosage , Tooth, Nonvital/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...