Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 14(11): 5656-5669, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38021146

ABSTRACT

The use of ultrashort pulse lasers in medical treatments is increasing and is already an essential tool, particularly in the treatment of eyes, bones and skin. One of the main advantages of laser treatment is that it is fast and minimally invasive. Due to the interaction of ultrashort laser pulses with matter, X-rays can be generated during the laser ablation process. This is important not only for the safety of the patient, but also for the practitioner to ensure that the legally permissible dose is not exceeded. Although our results do not raise safety concerns for existing clinical applications, they might impact future developments at higher peak powers. In order to provide guidance to laser users in the medical field, this paper examines the X-ray emission spectra and dose of several biological materials and describes their dependence on the laser pulse energy.

2.
Rev Sci Instrum ; 92(12): 123004, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972439

ABSTRACT

We present the design, integration, and operation of the novel vacuum ultraviolet (VUV) beamline installed at the free-electron laser (FEL) FLASH. The VUV source is based on high-order harmonic generation (HHG) in gas and is driven by an optical laser system synchronized with the timing structure of the FEL. Ultrashort pulses in the spectral range from 10 to 40 eV are coupled with the FEL in the beamline FL26, which features a reaction microscope (REMI) permanent endstation for time-resolved studies of ultrafast dynamics in atomic and molecular targets. The connection of the high-pressure gas HHG source to the ultra-high vacuum FEL beamline requires a compact and reliable system, able to encounter the challenging vacuum requirements and coupling conditions. First commissioning results show the successful operation of the beamline, reaching a VUV focused beam size of about 20 µm at the REMI endstation. Proof-of-principle photo-electron momentum measurements in argon indicate the source capabilities for future two-color pump-probe experiments.

3.
Opt Express ; 24(6): 6318-27, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136823

ABSTRACT

Signal-to-noise ratio is a key factor in lensless imaging, particularly for low diffraction signal experiments in the single shot regime. We present our recent study of the noise impact on holography with extended references. Experimental data have been measured in single shot acquisition using an intense coherent soft X-ray high harmonic source. The impact of hardware and software noise under various detection conditions is discussed. A final comparison between single shot and multi-shot regimes is given.

4.
Phys Rev Lett ; 96(16): 163901, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16712230

ABSTRACT

The temporal intensity distribution of the third harmonic of a Ti:sapphire laser generated in Xe gas is fully reconstructed from its spectral phase and amplitude distributions. The spectral phases are retrieved by cross correlating the fundamental laser frequency field with that of the third harmonic, in a three laser versus one harmonic photon coupling scheme. The third harmonic spectral amplitude distribution is extracted from its field autocorrelation. The measured pulse duration is found to be in agreement with that expected from lowest order perturbation theory both for unstretched and chirped pulses.

5.
Phys Rev Lett ; 95(22): 223903, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16384221

ABSTRACT

We demonstrate a new scheme for extreme ultraviolet (xuv) Fourier-transform spectroscopy based on the generation of two phase-locked high-harmonic beams. It allows us to measure for the first time interferograms at wavelengths as short as 90 nm, and open the perspective of performing high-resolution Fourier-transform absorption spectroscopy in the xuv. Our measurements also demonstrate that a precise control of the relative phase of harmonic pulses can be obtained with an accuracy on an attosecond time scale, of importance for future xuv pump-xuv probe attosecond spectroscopy.

6.
Phys Rev Lett ; 93(16): 163901, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15524990

ABSTRACT

The generation of attosecond pulses by superposition of high harmonics relies on their synchronization in the emission. Our experiments in the low-order, plateau, and cutoff regions of the spectrum reveal different regimes in the electron dynamics determining the synchronization quality. The shortest pulses are obtained by combining a spectral filtering of harmonics from the end of the plateau and the cutoff, and a far-field spatial filtering that selects a single electron quantum path contribution to the emission. This method applies to isolated pulses as well as pulse trains.

7.
Science ; 302(5650): 1540-3, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14645841

ABSTRACT

Subfemtosecond light pulses can be obtained by superposing several high harmonics of an intense laser pulse. Provided that the harmonics are emitted simultaneously, increasing their number should result in shorter pulses. However, we found that the high harmonics were not synchronized on an attosecond time scale, thus setting a lower limit to the achievable x-ray pulse duration. We showed that the synchronization could be improved considerably by controlling the underlying ultrafast electron dynamics, to provide pulses of 130 attoseconds in duration. We discuss the possibility of achieving even shorter pulses, which would allow us to track fast electron processes in matter.

8.
Phys Rev Lett ; 91(6): 063901, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12935073

ABSTRACT

The absolute timing of the high-harmonic attosecond pulse train with respect to the generating IR pump cycle has been measured for the first time. The attosecond pulses occur 190+/-20 as after each pump field maxima (twice per optical cycle), in agreement with the "short" quantum path of the quasiclassical model of harmonic generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...