Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38133397

ABSTRACT

This research delves into the efficacy of machine learning models in predicting water quality parameters within a catchment area, focusing on unraveling the significance of individual input variables. In order to manage water quality, it is necessary to determine the relationship between the physical attributes of the catchment, such as geological permeability and hydrologic soil groups, and in-stream water quality parameters. Water quality data were acquired from the Iran Water Resource Management Company (WRMC) through monthly sampling. For statistical analysis, the study utilized 5-year means (1998-2002) of water quality data. A total of 88 final stations were included in the analysis. Using machine learning methods, the paper gives relations for 11 in-stream water quality parameters: Sodium Adsorption Ratio (SAR), Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, K+, pH, conductivity (EC), and Total Dissolved Solids (TDS). To comprehensively evaluate model performance, the study employs diverse metrics, including Pearson's Linear Correlation Coefficient (R) and the mean absolute percentage error (MAPE). Notably, the Random Forest (RF) model emerges as the standout model across various water parameters. Integrating research outcomes enables targeted strategies for fostering environmental sustainability, contributing to the broader goal of cultivating resilient water ecosystems. As a practical pathway toward achieving a delicate balance between human activities and environmental preservation, this research actively contributes to sustainable water ecosystems.

2.
Materials (Basel) ; 15(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35744253

ABSTRACT

Replacing a specified quantity of cement with Class F fly ash contributes to sustainable development and reducing the greenhouse effect. In order to use Class F fly ash in self-compacting concrete (SCC), a prediction model that will give a satisfactory accuracy value for the compressive strength of such concrete is required. This paper considers a number of machine learning models created on a dataset of 327 experimentally tested samples in order to create an optimal predictive model. The set of input variables for all models consists of seven input variables, among which six are constituent components of SCC, and the seventh model variable represents the age of the sample. Models based on regression trees (RTs), Gaussian process regression (GPR), support vector regression (SVR) and artificial neural networks (ANNs) are considered. The accuracy of individual models and ensemble models are analyzed. The research shows that the model with the highest accuracy is an ensemble of ANNs. This accuracy expressed through the mean absolute error (MAE) and correlation coefficient (R) criteria is 4.37 MPa and 0.96, respectively. This paper also compares the accuracy of individual prediction models and determines their accuracy. Compared to theindividual ANN model, the more transparent multi-gene genetic programming (MGPP) model and the individual regression tree (RT) model have comparable or better prediction accuracy. The accuracy of the MGGP and RT models expressed through the MAE and R criteria is 5.70 MPa and 0.93, and 6.64 MPa and 0.89, respectively.

3.
Materials (Basel) ; 14(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361540

ABSTRACT

This paper gives a comprehensive overview of the state-of-the-art machine learning methods that can be used for estimating self-compacting rubberized concrete (SCRC) compressive strength, including multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) and Gaussian process regression (GPR). As a basis for the development of the forecast model, a database was obtained from an experimental study containing a total of 166 samples of SCRC. Ensembles of MLP-ANNs showed the best performance in forecasting with a mean absolute error (MAE) of 2.81 MPa and Pearson's linear correlation coefficient (R) of 0.96. The significantly simpler GPR model had almost the same accuracy criterion values as the most accurate model; furthermore, feature reduction is easy to combine with GPR using automatic relevance determination (ARD), leading to models with better performance and lower complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...