Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; : e4366, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961606

ABSTRACT

Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree-years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within-species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental-scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.

2.
New Phytol ; 243(1): 111-131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708434

ABSTRACT

Leaf traits are essential for understanding many physiological and ecological processes. Partial least squares regression (PLSR) models with leaf spectroscopy are widely applied for trait estimation, but their transferability across space, time, and plant functional types (PFTs) remains unclear. We compiled a novel dataset of paired leaf traits and spectra, with 47 393 records for > 700 species and eight PFTs at 101 globally distributed locations across multiple seasons. Using this dataset, we conducted an unprecedented comprehensive analysis to assess the transferability of PLSR models in estimating leaf traits. While PLSR models demonstrate commendable performance in predicting chlorophyll content, carotenoid, leaf water, and leaf mass per area prediction within their training data space, their efficacy diminishes when extrapolating to new contexts. Specifically, extrapolating to locations, seasons, and PFTs beyond the training data leads to reduced R2 (0.12-0.49, 0.15-0.42, and 0.25-0.56) and increased NRMSE (3.58-18.24%, 6.27-11.55%, and 7.0-33.12%) compared with nonspatial random cross-validation. The results underscore the importance of incorporating greater spectral diversity in model training to boost its transferability. These findings highlight potential errors in estimating leaf traits across large spatial domains, diverse PFTs, and time due to biased validation schemes, and provide guidance for future field sampling strategies and remote sensing applications.


Subject(s)
Plant Leaves , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Least-Squares Analysis , Quantitative Trait, Heritable , Chlorophyll/metabolism , Seasons , Models, Biological , Water , Carotenoids/metabolism
3.
Ecol Evol ; 14(5): e11292, 2024 May.
Article in English | MEDLINE | ID: mdl-38725827

ABSTRACT

Plant trait data are used to quantify how plants respond to environmental factors and can act as indicators of ecosystem function. Measured trait values are influenced by genetics, trade-offs, competition, environmental conditions, and phenology. These interacting effects on traits are poorly characterized across taxa, and for many traits, measurement protocols are not standardized. As a result, ancillary information about growth and measurement conditions can be highly variable, requiring a flexible data structure. In 2007, the TRY initiative was founded as an integrated database of plant trait data, including ancillary attributes relevant to understanding and interpreting the trait values. The TRY database now integrates around 700 original and collective datasets and has become a central resource of plant trait data. These data are provided in a generic long-table format, where a unique identifier links different trait records and ancillary data measured on the same entity. Due to the high number of trait records, plant taxa, and types of traits and ancillary data released from the TRY database, data preprocessing is necessary but not straightforward. Here, we present the 'rtry' R package, specifically designed to support plant trait data exploration and filtering. By integrating a subset of existing R functions essential for preprocessing, 'rtry' avoids the need for users to navigate the extensive R ecosystem and provides the functions under a consistent syntax. 'rtry' is therefore easy to use even for beginners in R. Notably, 'rtry' does not support data retrieval or analysis; rather, it focuses on the preprocessing tasks to optimize data quality. While 'rtry' primarily targets TRY data, its utility extends to data from other sources, such as the National Ecological Observatory Network (NEON). The 'rtry' package is available on the Comprehensive R Archive Network (CRAN; https://cran.r-project.org/package=rtry) and the GitHub Wiki (https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki) along with comprehensive documentation and vignettes describing detailed data preprocessing workflows.

4.
Glob Chang Biol ; 28(10): 3365-3378, 2022 05.
Article in English | MEDLINE | ID: mdl-35246895

ABSTRACT

Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.


Subject(s)
Droughts , Forests , Carbon , Dehydration , Europe , Humans
5.
J Neural Eng ; 15(2): 025002, 2018 04.
Article in English | MEDLINE | ID: mdl-29219114

ABSTRACT

OBJECTIVE: Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. APPROACH: Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. MAIN RESULTS: The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. SIGNIFICANCE: Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.


Subject(s)
Cell Differentiation/physiology , Electrodes, Implanted , Immunity, Innate/physiology , Lipopolysaccharide Receptors/antagonists & inhibitors , Motor Cortex/physiology , Neurons/physiology , Animals , Cell Differentiation/drug effects , Electrodes, Implanted/trends , Immunity, Innate/drug effects , Lipopolysaccharide Receptors/deficiency , Lipopolysaccharide Receptors/metabolism , Mice , Mice, Knockout , Microelectrodes/trends , Motor Cortex/cytology , Motor Cortex/drug effects , Neurons/drug effects
6.
Langmuir ; 34(1): 492-502, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29231737

ABSTRACT

Blood-material interactions are crucial to the lifetime, safety, and overall success of blood contacting devices. Hydrophilic polymer coatings have been employed to improve device lifetime by shielding blood contacting materials from the natural foreign body response, primarily the intrinsic pathway of the coagulation cascade. These coatings have the ability to repel proteins, cells, bacteria, and other micro-organisms. Coatings are desired to have long-term stability, so that the nonthrombogenic and nonfouling effects gained are long lasting. Unfortunately, there exist limited studies which investigate their stability under dynamic flow conditions as encountered in a physiological setting. In addition, direct comparisons between multiple coatings are lacking in the literature. In this study, we investigate the stability of polyethylene glycol (PEG), zwitterionic sulfobetaine silane (SBSi), and zwitterionic polyethylene glycol sulfobetaine silane (PEG-SBSi) grafted by a room temperature, sequential flow chemistry process on polydimethylsiloxane (PDMS) over time under ambient, static fluid (no flow), and physiologically relevant flow conditions and compare the results to uncoated PDMS controls. PEG, SBSi, and PEG-SBSi coatings maintained contact angles below 20° for up to 35 days under ambient conditions. SBSi and PEG-SBSi showed increased stability and hydrophilicity after 7 days under static conditions. They also retained contact angles ≤40° for all shear rates after 7 days under flow, demonstrating their potential for long-term stability. The effectiveness of the coatings to resist platelet adhesion was also studied under physiological flow conditions. PEG showed a 69% reduction in adhered platelets, PEG-SBSi a significant 80% reduction, and SBSi a significant 96% reduction compared to uncoated control samples, demonstrating their potential applicability for blood contacting applications. In addition, the presented coatings and their stability under shear may be of interest in other applications including marine coatings, lab on a chip devices, and contact lenses, where it is desirable to reduce surface fouling due to proteins, cells, and other organisms.


Subject(s)
Dimethylpolysiloxanes/chemistry , Lab-On-A-Chip Devices , Polyethylene Glycols/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Platelet Adhesiveness/drug effects , Silanes/chemistry , Surface Properties
7.
J Neurosci Methods ; 273: 1-9, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27485087

ABSTRACT

BACKGROUND: It is currently unclear how the platinum (Pt) species released from platinum-containing stimulating electrodes may affect the health of the surrounding tissue. This study develops an effective system to assess the cytotoxicity of any electrode-liberated Pt over a short duration, to screen systems before future in vivo testing. NEW METHOD: A platinum electrode was stimulated for two hours under physiologically relevant conditions to induce the liberation of Pt species. The total concentration of liberated Pt species was quantified and the concentration found was used to develop a range of Pt species for our model system comprised of microglia and neuron-like cells. RESULTS: Under our stimulation conditions (k=2.3, charge density of 57.7µC/cm2), Pt was liberated to a concentration of 1ppm. Interestingly, after 24h of Pt exposure, the dose-dependent cytotoxicity plots revealed that cell death became statistically significant at 10ppm for microglia and 20ppm for neuronal cells. However, in neuron-like cell cultures, concentrations above 1ppm resulted in significant neurite loss after 24h. COMPARISON WITH EXISTING METHODS: To our knowledge, there does not exist a simple, in vitro assay system for assessing the cytotoxicity of Pt liberated from stimulating neural electrodes. CONCLUSIONS: This work describes a simple model assay that is designed to be applicable to almost any electrode and stimulation system where the electrode is directly juxtaposed to the neural target. Based on the application, the duration of stimulation and Pt exposure may be varied.


Subject(s)
Cell Death/drug effects , Cytotoxins/toxicity , Electrodes/adverse effects , Microglia/drug effects , Motor Neurons/drug effects , Platinum Compounds/toxicity , Animals , Cell Line, Transformed , Culture Media, Conditioned/toxicity , Dose-Response Relationship, Drug , Electric Stimulation , Mice , Microglia/chemistry
8.
J Mater Chem B ; 2(16): 2248-2258, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-25132966

ABSTRACT

Despite successful initial recording, neuroinflammatory-mediated oxidative stress products can contribute to microelectrode failure by a variety of mechanisms including: inducing microelectrode corrosion, degrading insulating/passivating materials, promoting blood-brain barrier breakdown, and directly damaging surrounding neurons. We have shown that a variety of anti-oxidant treatments can reduce intracortical microelectrode-mediated oxidative stress, and preserve neuronal viability. Unfortunately, short-term soluble delivery of anti-oxidant therapies may be unable to provide sustained therapeutic benefits due to low bio-availability and fast clearance rates. In order to develop a system to provide sustained neuroprotection, we investigated modifying the microelectrode surface with an anti-oxidative coating. For initial proof of concept, we chose the superoxide dismutase (SOD) mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP). Our system utilizes a composite coating of adsorbed and immobilized MnTBAP designed to provide an initial release followed by continued presentation of an immobilized layer of the antioxidant. Surface modification was confirmed by XPS and QCMB-D analysis. Antioxidant activity of composite surfaces was determined using a Riboflavin/NitroBlue Tetrazolium (RF/NBT) assay. Our results indicate that the hybrid modified surfaces provide several days of anti-oxidative activity. Additionally, in vitro studies with BV-2 microglia cells indicated a significant reduction of intracellular and extracellular reactive oxygen species when cultured on composite MnTBAP surfaces.

9.
J Biomed Mater Res A ; 102(12): 4195-205, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24443272

ABSTRACT

The current study demonstrates the first surface modification for poly(dimethylsiloxane) (PDMS) microfluidic networks that displays a long shelf life as well as extended hemocompatibility. Uncoated PDMS microchannel networks rapidly adsorb high levels of fibrinogen in blood contacting applications. Fibrinogen adsorption initiates platelet activation, and causes a rapid increase in pressure across microchannel networks, rendering them useless for long term applications. Here, we describe the modification of sealed PDMS microchannels using an oxygen plasma pretreatment and poly(ethylene glycol) grafting approach. We present results regarding the testing of the coated microchannels after extended periods of aging and blood exposure. Our PEG-grafted channels showed significantly reduced fibrinogen adsorption and platelet adhesion up to 28 days after application, highlighting the stability and functionality of the coating over time. Our coated microchannel networks also displayed a significant reduction in the coagulation response under whole blood flow. Further, pressure across coated microchannel networks took over 16 times longer to double than the uncoated controls. Collectively, our data implies the potential for a coating platform for microfluidic devices in many blood-contacting applications.


Subject(s)
Coated Materials, Biocompatible/chemistry , Dimethylpolysiloxanes/chemistry , Materials Testing , Microfluidic Analytical Techniques , Polyethylene Glycols/chemistry , Adsorption , Blood Platelets/cytology , Blood Platelets/metabolism , Fibrinogen/metabolism , Humans , Platelet Adhesiveness
10.
Biomaterials ; 31(30): 7805-12, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20674008

ABSTRACT

Angiogenesis is an organized series of events, beginning with vessel destabilization, followed by endothelial cell re-organization, and ending with vessel maturation. Vascular endothelial growth factor (VEGF) aids in vascular permeability and endothelial cell recruitment while sphingosine 1-phosphate (S1P) stimulates vascular stability. Accordingly, VEGF may inhibit vessel stabilization while S1P may inhibit endothelial cell recruitment. For this reason, we created a new externally-regulated delivery model that not only permits sustained release of bioactive factors, but also temporal separation of the delivery of growth factors. Using this model, sequential delivery of factors was first confirmed in vitro with associated endothelial cells responding in a dose dependent manner. Furthermore, using a modified murine Matrigel plug model, it is apparent that delivery strategies where VEGF presentation is temporally separated from S1P presentation not only led to greater recruitment of endothelial cells, but also higher maturation index of associated vessels.


Subject(s)
Delayed-Action Preparations , Drug Delivery Systems/methods , Lysophospholipids , Neovascularization, Physiologic/drug effects , Sphingosine/analogs & derivatives , Vascular Endothelial Growth Factor A , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Blood Vessels/drug effects , Blood Vessels/metabolism , Cellulose/chemistry , Collagen/metabolism , Drug Combinations , Laminin/metabolism , Lysophospholipids/administration & dosage , Lysophospholipids/pharmacology , Materials Testing , Mice , Porosity , Proteoglycans/metabolism , Sphingosine/administration & dosage , Sphingosine/pharmacology , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...