Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Toxicol ; 23(5-6): 185-197, 2023 06.
Article in English | MEDLINE | ID: mdl-37119387

ABSTRACT

Intermittent hypoxic preconditioning (IHP) is a well-established cardioprotective intervention in models of ischemia/reperfusion injury. Nevertheless, the significance of IHP in different cardiac pathologies remains elusive. In order to investigate the role of IHP and its effects on calcium-dependent signalization in HF, we employed a model of cardiomyopathy induced by doxorubicin (Dox), a widely used drug from the class of cardiotoxic antineoplastics, which was i.p. injected to Wistar rats (4 applications of 4 mg/kg/week). IHP-treated group was exposed to IHP for 2 weeks prior to Dox administration. IHP ameliorated Dox-induced reduction in cardiac output. Western blot analysis revealed increased expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) while the expression of hypoxia inducible factor (HIF)-1-α, which is a crucial regulator of hypoxia-inducible genes, was not changed. Animals administered with Dox had further decreased expression of TRPV1 and TRPV4 (transient receptor potential, vanilloid subtype) ion channels along with suppressed Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. In summary, IHP-mediated improvement in cardiac output in the model of Dox-induced cardiomyopathy is likely a result of increased SERCA2a expression which could implicate IHP as a potential protective intervention in Dox cardiomyopathy, however, further analysis of observed effects is still required.


Subject(s)
Cardiomyopathies , Myocytes, Cardiac , Rats , Animals , Rats, Wistar , Apoptosis , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Cardiomyopathies/metabolism , Doxorubicin/toxicity , Hypoxia/chemically induced
2.
Gen Physiol Biophys ; 38(3): 265-270, 2019 May.
Article in English | MEDLINE | ID: mdl-31184313

ABSTRACT

This study investigated the effect of lisinopril (angiotensin-converting enzyme inhibitor) on potential behavioural alterations in spontaneously hypertensive rats (SHR). Three groups of 15-17-week-old rats were investigated for 2 weeks: Wistar control group, SHR group and SHR+lisinopril group. Systolic blood pressure (SBP) was normal in Wistar rats, SHR expressed hypertension and lisinopril normalized the SBP. We observed increased time spent in and increased frequency of entries to the central area of the open field in SHR, while lisinopril induced a trend to reduce the time spent in the central area of the open field and reduced the frequency of entries there. There was a positive correlation between SBP and reduced anxiety-like behaviour in normotensive rats; no correlations in the SHR or SHR+lisinopril groups were observed. We conclude that lisinopril normalized the increase in SBP and partly reversed the alterations of anxiety-like behaviour in SHR.


Subject(s)
Antihypertensive Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Hypertension/drug therapy , Hypertension/psychology , Lisinopril/pharmacology , Animals , Anxiety/prevention & control , Blood Pressure , Hypertension/physiopathology , Rats , Rats, Inbred SHR , Rats, Wistar
3.
Front Physiol ; 10: 172, 2019.
Article in English | MEDLINE | ID: mdl-30930784

ABSTRACT

Wolframin (Wfs1) is a membrane protein of the sarco/endoplasmic reticulum. Wfs1 mutations are responsible for the Wolfram syndrome, characterized by diabetic and neurological symptoms. Although Wfs1 is expressed in cardiac muscle, its role in this tissue is not clear. We have characterized the effect of invalidation of Wfs1 on calcium signaling-related processes in isolated ventricular myocytes of exon5-Wfs1 deficient rats (Wfs1-e5/-e5) before the onset of overt disease. Calcium transients and contraction were measured in field-stimulated isolated myocytes using confocal microscopy with calcium indicator fluo-3 AM and sarcomere length detection. Calcium currents and their calcium release-dependent inactivation were characterized in whole-cell patch-clamp experiments. At 4 months, Wfs1-e5/-e5 animals were euglycemic, and echocardiographic examination revealed fully compensated cardiac function. In field-stimulated isolated ventricular myocytes, both the amplitude and the duration of contraction of Wfs1-e5/-e5 animals were elevated relative to control Wfs1+/+ littermates. Increased contractility of myocytes resulted largely from prolonged cytosolic calcium transients. Neither the amplitude of calcium currents nor their voltage dependence of activation differed between the two groups. Calcium currents in Wfs1-e5/-e5 myocytes showed a larger extent of inactivation by short voltage prepulses applied to selectively induce calcium release-dependent inactivation of calcium current. Neither the calcium content of the sarcoplasmic reticulum, measured by application of 20 mmol/l caffeine, nor the expression of SERCA2, determined from Western blots, differed significantly in myocytes of Wfs1-e5/-e5 animals compared to control ones. These experiments point to increased duration of calcium release in ventricular myocytes of Wfs1-e5/-e5 animals. We speculate that the lack of functional wolframin might cause changes leading to upregulation of RyR2 channels resulting in prolongation of channel openings and/or a delay in termination of calcium release.

SELECTION OF CITATIONS
SEARCH DETAIL
...