Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Insect Sci ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462506

ABSTRACT

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

2.
Syst Biol ; 73(3): 532-545, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38320290

ABSTRACT

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.


Subject(s)
Cockroaches , Phylogeny , Animals , Cockroaches/genetics , Cockroaches/classification , Genome, Mitochondrial , Evolution, Molecular
3.
Ecol Evol ; 9(5): 2678-2687, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30891208

ABSTRACT

The application of high-throughput sequencing to retrieve multi-taxon DNA from different substrates such as water, soil, and stomach contents has enabled species identification without prior knowledge of taxon compositions. Here we used three minibarcodes designed to target mitochondrial COI in plankton, 16S in fish, and 16S in crustaceans, to compare ethanol- and tissue-derived DNA extraction methodologies for metabarcoding. The stomach contents of pygmy devilrays (Mobula kuhlii cf. eregoodootenkee) were used to test whether ethanol-derived DNA would provide a suitable substrate for metabarcoding. The DNA barcoding assays indicated that tissue-derived operational taxonomic units (OTUs) were greater compared to those from extractions performed directly on the ethanol preservative. Tissue-derived DNA extraction is therefore recommended for broader taxonomic coverage. Metabarcoding applications should consider including the following: (i) multiple barcodes, both taxon specific (e.g., 12S or 16S) and more universal (e.g., COI or 18S) to overcome bias and taxon misidentification and (ii) PCR inhibitor removal steps that will likely enhance amplification yields. However, where tissue is limited or no longer available, but the ethanol-preservative medium is still available, metabarcoding directly from ethanol does recover the majority of common OTUs, suggesting the ethanol-retrieval method could be applicable for dietary studies. Metabarcoding directly from preservative ethanol may also be useful where tissue samples are limited or highly valued; bulk samples are collected, such as for rapid species inventories; or mixed-voucher sampling is conducted (e.g., for plankton, insects, and crustaceans).

SELECTION OF CITATIONS
SEARCH DETAIL