Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1393497, 2024.
Article in English | MEDLINE | ID: mdl-38915776

ABSTRACT

Introduction: This systematic review investigates the interplay between oxytocin and exercise; in terms of analgesic, anti-inflammatory, pro-regenerative, and cardioprotective effects. Furthermore, by analyzing measurement methods, we aim to improve measurement validity and reliability. Methods: Utilizing PRISMA, GRADE, and MECIR protocols, we examined five databases with a modified SPIDER search. Including studies on healthy participants, published within the last 20 years, based on keywords "oxytocin," "exercise" and "measurement," 690 studies were retrieved initially (455 unique records). After excluding studies of clinically identifiable diseases, and unpublished and reproduction-focused studies, 175 studies qualified for the narrative cross-thematic and structural analysis. Results: The analysis resulted in five categories showing the reciprocal impact of oxytocin and exercise: Exercise (50), Physiology (63), Environment (27), Social Context (65), and Stress (49). Exercise-induced oxytocin could promote tissue regeneration, with 32 studies showing its analgesic and anti-inflammatory effects, while 14 studies discussed memory and cognition. Furthermore, empathy-associated OXTR rs53576 polymorphism might influence team sports performance. Since dietary habits and substance abuse can impact oxytocin secretion too, combining self-report tests and repeated salivary measurements may help achieve precision. Discussion: Oxytocin's effect on fear extinction and social cognition might generate strategies for mental training, and technical, and tactical development in sports. Exercise-induced oxytocin can affect the amount of stress experienced by athletes, and their response to it. However, oxytocin levels could depend on the type of sport in means of contact level, exercise intensity, and duration. The influence of oxytocin on athletes' performance and recovery could have been exploited due to its short half-life. Examining oxytocin's complex interactions with exercise paves the way for future research and application in sports science, psychology, and medical disciplines. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=512184, identifier CRD42024512184.

2.
Environ Sci Pollut Res Int ; 30(24): 66033-66049, 2023 May.
Article in English | MEDLINE | ID: mdl-37095213

ABSTRACT

Waterbirds depend on a dispersed network of wetlands for their annual life cycle during migration. Climate and land use changes raise new concerns about the sustainability of these habitat networks, as water scarcity triggers ecological and socioeconomic impacts threatening wetland availability and quality. During the migration period, birds can be present in large enough numbers to influence water quality themselves linking them and water management in efforts to conserve habitats for endangered populations. Despite this, the guidelines within laws do not properly account for the annual change of water quality due to natural factors such as the migration periods of birds. Principal component analysis and principal component regression was used to analyze the correlations between the presence of a multitude of migratory waterbird communities and water quality metrics based on a dataset collected over four years in the Dumbravița section of the Homoród stream in Transylvania. The results reveal a correlation between the presence and numbers of various bird species and the seasonal changes in water quality. Piscivorous birds tended to increase the phosphorus load, herbivorous waterbirds the nitrogen load, while benthivorous duck species influenced a variety of parameters. The established PCR water quality prediction model showed accurate prediction capabilities for the water quality index of the observed region. For the tested data set, the method provided an R2 value of 0.81 and a mean squared prediction error of 0.17.


Subject(s)
Ecosystem , Water Quality , Animals , Principal Component Analysis , Birds , Wetlands , Rivers , Conservation of Natural Resources
3.
Bot Stud ; 64(1): 2, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692644

ABSTRACT

BACKGROUND: The analysis of genetic diversity of protected plant species can greatly support conservation efforts. Plantago maxima Juss. ex Jacq. is a perennial species distributed along the Eurasian steppe. The westernmost range edge of the species' distribution is located in the Pannonian basin, in Hungary where it is represented by a few, fragmented and highly endangered populations. We studied population diversity of all Hungarian range edge, natural populations, and one established ex situ population. One population from the centre of distribution (Kazakhstan) was implemented in the cpDNA haplotype study to compare the peripheral vs. central populations. We performed morphometric trait-based analysis, chromosome studies (morphometric analyses and FISH) and genetic diversity evaluations using inter simple sequence repeats (ISSR) and cpDNA trnL-trnF to evaluate differences between the in situ and ex situ populations as well as central vs. peripheral populations. RESULTS: Our results showed no obvious morphological differences among the in situ and ex situ populations in the period between 2018 and 2020. One ex situ subpopulation develops flowers three years in a row from 2019, which is a favourable indicator of the introduction success. Hungarian populations are exclusively diploids (2n = 2x = 12). The karyogram consists of 5 metacentric and 1 acrocentric chromosome pair. Plantago maxima has one 35S and two 5S rDNA loci, located on the acrocentric chromosome pair. Eight variable ISSR primers yielded 100 fragments, of which 74.6% were polymorphic (mean He = 0.220). A high level of genetic variation within population was observed (92%) while the genetic differentiation among the populations was only 8%. STRUCTURE analysis revealed that the largest Kunpeszér population separated from the rest of the Hungarian populations, indicating a high rate of admixture among the other ones. Based on the trnL-trnF sequence analysis the Hungarian populations represent a single haplotype, which can indicate a reduced diversity due to isolation and recent population decline. By contrast, Kazakh population represents a distinct haplotype compared to the Hungarian samples. CONCLUSIONS: The present study draws the attention to the high conservation value of the Plantago maxima populations from the westernmost range edge of the species' distribution.

4.
Eur Arch Otorhinolaryngol ; 280(4): 1973-1981, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36471046

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the value of metabolic tumor imaging using hybrid PET for the preoperative detection of extranodal extension (ENE) in lymph node metastases of oropharyngeal squamous cell carcinoma (OPSCC). METHODS: We performed a retrospective analysis of a consecutive cohort of patients with OPSCC treated with primary surgery with or without adjuvant (chemo-) radiotherapy at the Kantonsspital Sankt-Gallen and the University Hospital Zurich, Switzerland, from 2010 until 2019. Hybrid PET was compared to conventional cross-sectional imaging with MRI and CT. Histopathological presence of ENE of neck dissection specimen served as gold standard. RESULTS: A total number of 234 patients were included in the study, 95 (40.6%) of which had pathological ENE (pENE). CT has a good specificity with 93.7%; meanwhile, MRI was the most sensitive diagnostic method (72.0%). The nodal metabolic tumor parameters (SUVmax, TLG, MTV) were significantly higher in patients with positive ENE (p < 0.001 for all three parameters) than in patients with negative ENE (p < 0.001, for all three parameters). CONCLUSIONS: CT achieved the best specificity, while MRI had the best sensitivity to detect ENE. Nodal metabolic tumor parameters differed significantly between ENE-positive/negative and p16-positive/negative patients. Hence, quantitative data obtained by metabolic imaging might predict presence of ENE and, therefore, could be helpful in customizing therapy management.


Subject(s)
Head and Neck Neoplasms , Neoplasms, Unknown Primary , Oropharyngeal Neoplasms , Humans , Extranodal Extension , Retrospective Studies , Neoplasms, Unknown Primary/diagnostic imaging , Prognosis , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/therapy , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods
5.
Nat Commun ; 13(1): 2399, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504912

ABSTRACT

The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.


Subject(s)
Plague , Animals , Archaeology , DNA, Mitochondrial/genetics , Europe/epidemiology , Humans , Middle East , Plague/epidemiology , Rats
6.
Antioxidants (Basel) ; 11(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35453324

ABSTRACT

To date, several research studies addressed the topic of phytochemical analysis of the different coloured pepper berries during ripening, but none discussed it in the case of purple peppers. In this study we examine whether the anthocyanin accumulation of the berries in the early stages of ripening could result in a higher antioxidant capacity due to the elevated amount of polyphenolic compounds. Therefore, enzymatic and non-enzymatic antioxidant capacity was measured in four distinct phenophases of fruit maturity. Furthermore, the expression of structural and regulatory genes of the anthocyanin biosynthetic pathway was also investigated. An overall decreasing trend was observed in the polyphenolic and flavonoid content and antioxidant capacity of the samples towards biological ripeness. Significant changes both in between the genotypes and in between the phenophases were scored, with the genotype being the most affecting factor on the phytonutrients. An extreme purple pepper yielded outstanding results compared to the other genotypes, with its polyphenolic and flavonoid content as well as its antioxidant capacity being the highest in every phenophase studied. Based on our results, besides MYBa (Ca10g11650) two other putative MYBs participate in the regulation of the anthocyanin biosynthetic pathway.

7.
Plants (Basel) ; 11(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35336646

ABSTRACT

This article evaluates the three-year vegetation dynamics of a species rich, protected steppe grassland on loess where no grazing occurred for decades at Bicske, Central Hungary. A detailed coenological survey of vascular vegetation was conducted in four permanent plots of 16 m2 each from 2018 to 2020. Raunkiaer's life-forms, distribution range, and thousand-seed weight of species were evaluated. Shannon diversity and turnover rates for the species and the vegetation were also determined for each plot. In total, 108 vascular plant species were detected. The results indicate grassland stability when plant traits spectra were based on species presence data, but directional change if species cover values were used to weight trait categories. During the three years of the study, chamaephytes decreased and woody species increased their contribution for the Raunkiaer's life-forms, while the cosmopolitan group has steadily lost its significance for distribution range types. Shannon diversity varied between 2.46 and 3.18 among plots (based on natural logarithm) and remained statistically unchanged through time. Average species turnover rates were 14.18% for 2018/19 and 17.52% for 2019/20, whereas corresponding values for vegetation turnover rates were 25.83% and 23.28%. Vegetation turnover rate was significantly higher than the species turnover rate.

8.
Methods Mol Biol ; 2454: 163-196, 2022.
Article in English | MEDLINE | ID: mdl-33755910

ABSTRACT

Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Endothelial Cells , Humans , Myocytes, Cardiac , Technology
9.
Eur J Nucl Med Mol Imaging ; 48(13): 4483-4494, 2021 12.
Article in English | MEDLINE | ID: mdl-34120201

ABSTRACT

PURPOSE: Improved logistics and availability led to a rapid increase in the use of [18F]-PSMA-1007 for prostate cancer PET imaging. Initial data suggests increased uptake in benign lesions compared to [68 Ga]-PSMA-11, and clinical observations found increased unspecific bone uptake (UBU). We therefore investigate the frequency and characteristics of UBU in [18F]-PSMA-1007 PET. METHODS: We retrospectively analyzed [18F]-PSMA-1007 PET scans from four centers for the presence of UBU, defined as a focal mild-to-moderate uptake (SUVmax < 10.0) not obviously related to a benign or malignant cause. If present, up to three leading UBUs were quantified (SUVmax), localized, and correlated to clinical parameters, such as age, PSA, injected dose, Gleason score, tumor size (T1-T4), and type of PET scanner (analog vs. digital). Additionally, clinical and imaging follow-up results and therapeutic impact were evaluated. RESULTS: UBUs were identified in 179 out of 348 patients (51.4%). The most frequent localizations were ribs (57.5%) and pelvis (24.8%). The frequency of UBUs was not associated with PSA, Gleason score, tumor size, age, or the injected [18F]-PSMA-1007 dose. UBUs were significantly more frequent in images obtained with digital PET/CT scans (n = 74, 82%) than analog PET/CT scans (n = 221, 40.3%) (p = .0001) but not in digital PET/MR (n = 53, 51%) (p = .1599). In 80 out of 179 patients (44.7%), the interpretation of UBUs was critical for therapeutic management and therefore considered clinically relevant. For 65 UBUs, follow-ups were available: three biopsies, three radiotherapies with PSA follow-up, and 59 cases with imaging. After follow-up, UBUs were still considered unclear in 28 of 65 patients (43%), benign in 28 (43%), and malignant in nine (14%) patients. CONCLUSION: UBUs occur in two-thirds of patients imaged with [18F]-PSMA-1007 PET/CT and are significantly more frequent on digital PET scanners than analog scanners. UBUs should be interpreted carefully to avoid over-staging.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Edetic Acid , Humans , Male , Niacinamide/analogs & derivatives , Oligopeptides , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
10.
Front Pharmacol ; 12: 603016, 2021.
Article in English | MEDLINE | ID: mdl-33854431

ABSTRACT

The substantial progress of the human induced pluripotent stem cell (hiPSC) technologies over the last decade has provided us with new opportunities for cardiovascular drug discovery, regenerative medicine, and disease modeling. The combination of hiPSC with 3D culture techniques offers numerous advantages for generating and studying physiological and pathophysiological cardiac models. Cells grown in 3D can overcome many limitations of 2D cell cultures and animal models. Furthermore, it enables the investigation in an architecturally appropriate, complex cellular environment in vitro. Yet, generation and study of cardiac organoids-which may contain versatile cardiovascular cell types differentiated from hiPSC-remain a challenge. The large-scale and high-throughput applications require accurate and standardised models with highly automated processes in culturing, imaging and data collection. Besides the compound spatial structure of organoids, their biological processes also possess different temporal dynamics which require other methods and technologies to detect them. In this review, we summarise the possibilities and challenges of acquiring relevant information from 3D cardiovascular models. We focus on the opportunities during different time-scale processes in dynamic pharmacological experiments and discuss the putative steps toward one-size-fits-all assays.

11.
Front Neurosci ; 14: 908, 2020.
Article in English | MEDLINE | ID: mdl-32982680

ABSTRACT

Blood-brain barrier opening (BBBO) with pulsed Focused Ultrasound (pFUS) and microbubbles (MB) has received increasing interest as a method for neurotherapeutics of the central nervous system. In general, conventional MRI [i.e., T2w, T2∗w, gadolinium (Gd) enhanced T1w] is used to monitor the effects of pFUS+MB on BBBO and/or assess whether sonication results in parenchymal damage. This study employed multimodal MRI techniques and 18F-Fludeoxyglucose (FDG) PET to evaluate the effects of single and multiple weekly pFUS+MB sessions on morphology and glucose utilization levels in the rat cortex and hippocampus. pFUS was performed with 0.548 MHz transducer with a slow infusion over 1 min of OptisonTM (5-8 × 107 MB) in nine focal points in cortex and four in hippocampus. During pFUS+MB treatment, Gd-T1w was performed at 3 T to confirm BBBO, along with subsequent T2w, T2∗w, DTI and glucose CEST (glucoCEST)-weighted imaging by high field 9.4 T and compared with FDG-PET and immunohistochemistry. Animals receiving a single pFUS+MB exhibited minimal hypointense voxels on T2∗w. Brains receiving multiple pFUS+MB treatments demonstrated persistent T2w and T2∗ abnormalities associated with changes in DTI and glucoCEST when compared to contralateral parenchyma. Decreased glucoCEST contrast was substantiated by FDG-PET in cortex following multiple sonications. Immunohistochemistry showed significantly dilated vessels and decreased neuronal glucose transporter (GLUT3) expression in sonicated cortex and hippocampus without changes in neuronal counts. These results suggest the importance to standardize MRI protocols in concert with advanced imaging techniques when evaluating long term effects of pFUS+MB BBBO in clinical trials for neurological diseases.

12.
Environ Sci Pollut Res Int ; 27(16): 20136-20148, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239409

ABSTRACT

Lake Nasser is one of the largest man-made lakes on earth. It has a vital importance to Egypt for several decades because of the safe water supply of the country. Therefore, the water quality of the Lake Nasser must be profoundly investigated, and physico-chemical parameter changes of the water of the Lake Nasser should be continuously monitored and assessed. This work describes the present state of the physico-chemical (nitrate-nitrogen, nitrite-nitrogen, orthophosphate, total phosphate content, dissolved oxygen content, chemical oxygen demand, and biological oxygen demand) water parameters of Lake Nasser in Egypt at nine measurement sites along the Lake Nasser. The algorithm was devised at the University of Pannonia, Hungary, for the evaluation of the water quality. The aquatic environmental indices determined alongside the Lake Nasser fall into the category of "good" water quality at seven sampling sites and exhibited "excellent" water quality at two sampling sites according to Egyptian Governmental Decree No. 92/2013. In light of the tremendous demand for safe and healthy water supply in Egypt and international requirements, the water quality assessment is a very important tool for providing reliable information on the water quality. The protocol for water quality assessment could significantly contribute to the provision of high-quality water supply in Egypt. In conclusion, it can be stated that the parameters under investigation in different regions of Lake Nasser fall within the permissible ranges and the water of the Lake has good quality for drinking, irrigation, and fish cultures according to Egyptian standards; however, according to European specifications, there are steps to be accomplished for future water quality improvement.


Subject(s)
Lakes , Water Pollutants, Chemical/analysis , Animals , Egypt , Environmental Monitoring , Hungary , Water Quality
13.
J Neuroinflammation ; 16(1): 155, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31345243

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics' delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. METHODS: Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5-8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. RESULTS: In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. CONCLUSION: Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Microglia/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Female , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Rats , Rats, Sprague-Dawley , Sonication
14.
Theranostics ; 8(17): 4837-4855, 2018.
Article in English | MEDLINE | ID: mdl-30279741

ABSTRACT

Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.


Subject(s)
Cerebral Cortex/pathology , Cerebral Cortex/radiation effects , Hippocampus/pathology , Hippocampus/radiation effects , Microbubbles/adverse effects , Ultrasonography/adverse effects , Animals , Histocytochemistry , Longitudinal Studies , Magnetic Resonance Imaging , Rats, Sprague-Dawley
15.
Theranostics ; 8(8): 2245-2248, 2018.
Article in English | MEDLINE | ID: mdl-29722362

ABSTRACT

This editorial highlights the findings of McMahon [1] and demonstrates the need for careful attention to experimental conditions that influence microbubble concentration and pharmacokinetics contributed to focused ultrasound-induced blood brain barrier opening and sterile inflammation.


Subject(s)
Blood-Brain Barrier , Microbubbles , Attention , Humans , Inflammation , Permeability
16.
Environ Sci Pollut Res Int ; 24(32): 25355-25371, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28932976

ABSTRACT

One of the issues of the Hungarian Water Management Strategy is the improvement and upgrading of the water of Lake Balaton. The Water Framework Directive (WFD) specifies and sets forth the achievement of the good ecological status. However, the assessment of the water quality of the lake as a complex system requires a comprehensive monitoring and evaluation procedure. Measurements were carried out around the Lake Balaton at ten different locations/sites and 13 physical-chemical parameters were monitored at each measurement site.For the interpretation of the water chemistry parameters the Aquatic Environmental Assessment (AEA) method devised by authors was used for the water body of the Lake Balaton. The AEA method can be used for all types of the water bodies since it is flexible and using individual weighting procedure for the water chemistry parameters comprehensive information can be obtain. The AEA method was compared with existing EIA methods according to a predefined criterion system and proved to be the most suitable tool for evaluating the environmental impacts in our study.On the basis of the results it can be concluded that the status of the quality of studied area on the Lake Balaton can be categorized as proper quality (from the outcome of the ten measurement sites this conclusion was reached at seven sites).


Subject(s)
Environmental Monitoring , Water Quality , Conservation of Water Resources , Ecology , Environmental Monitoring/methods , Hungary , Lakes , Water Supply
18.
Proc Natl Acad Sci U S A ; 114(1): E75-E84, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27994152

ABSTRACT

MRI-guided pulsed focused ultrasound (pFUS) combined with systemic infusion of ultrasound contrast agent microbubbles (MB) causes localized blood-brain barrier (BBB) disruption that is currently being advocated for increasing drug or gene delivery in neurological diseases. The mechanical acoustic cavitation effects of opening the BBB by low-intensity pFUS+MB, as evidenced by contrast-enhanced MRI, resulted in an immediate damage-associated molecular pattern (DAMP) response including elevations in heat-shock protein 70, IL-1, IL-18, and TNFα indicative of a sterile inflammatory response (SIR) in the parenchyma. Concurrent with DAMP presentation, significant elevations in proinflammatory, antiinflammatory, and trophic factors along with neurotrophic and neurogenesis factors were detected; these elevations lasted 24 h. Transcriptomic analysis of sonicated brain supported the proteomic findings and indicated that the SIR was facilitated through the induction of the NFκB pathway. Histological evaluation demonstrated increased albumin in the parenchyma that cleared by 24 h along with TUNEL+ neurons, activated astrocytes, microglia, and increased cell adhesion molecules in the vasculature. Infusion of fluorescent beads 3 d before pFUS+MB revealed the infiltration of CD68+ macrophages at 6 d postsonication, as is consistent with an innate immune response. pFUS+MB is being considered as part of a noninvasive adjuvant treatment for malignancy or neurodegenerative diseases. These results demonstrate that pFUS+MB induces an SIR compatible with ischemia or mild traumatic brain injury. Further investigation will be required before this approach can be widely implemented in clinical trials.


Subject(s)
Blood-Brain Barrier/physiology , Brain/physiopathology , Drug Delivery Systems/methods , Gene Transfer Techniques , Sonication/methods , Ultrasonography/methods , Animals , Astrocytes/metabolism , Cell Adhesion Molecules/metabolism , Female , HSP70 Heat-Shock Proteins/metabolism , Inflammation/pathology , Interleukin-1/metabolism , Interleukin-18/metabolism , Macrophages/immunology , Microglia/metabolism , Neurodegenerative Diseases/therapy , Parenchymal Tissue/pathology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
19.
Nanomedicine ; 13(2): 503-513, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27520728

ABSTRACT

Stem cell-based therapies have become a major focus in regenerative medicine and to treat diseases. A straightforward approach combining three drugs, heparin (H), protamine (P) with ferumoxytol (F) in the form of nanocomplexes (NCs) effectively labeled stem cells for cellular MRI. We report on the physicochemical characteristics for optimizing the H, P, and F components in different ratios, and mixing sequences, producing NCs that varied in hydrodynamic size. NC size depended on the order in which drugs were mixed in media. Electron microscopy of HPF or FHP showed that F was located on the surface of spheroidal shaped HP complexes. Human stem cells incubated with FHP NCs resulted in a significantly greater iron concentration per cell compared to that found in HPF NCs with the same concentration of F. These results indicate that FHP could be useful for labeling stem cells in translational studies in the clinic.


Subject(s)
Ferrosoferric Oxide , Heparin , Protamines , Stem Cells , Cell Tracking , Humans , Magnetic Resonance Imaging , Magnetics , Nanoparticles , Stem Cell Transplantation
20.
J Control Release ; 187: 74-82, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-24878186

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans with a very poor prognosis. Chemotherapeutical treatment of GBMs is limited by the blood-brain barrier (BBB). This physical and metabolic barrier separates the blood from the brain parenchyma and prevents the entry of toxins but also of potentially useful chemotherapeutics from the blood into the brain. Microbubble-enhanced focused ultrasound (MB-FUS) has been proposed to disrupt locally and reversibly the BBB to facilitate diffusion of drugs from the micro vasculature into brain tissue. The present study investigates the feasibility and the safety of such an approach in two syngenic mouse models of GBM (GL261 and SMA-560). Local doxorubicin (DOX) concentration in MB-FUS sonicated normal brain tissue as well as in brain tumor tissue was increased as compared to the unsonicated control tissue in the contralateral hemisphere. Moreover, ultrasound mediated BBB disruption, in combination with DOX therapy, resulted in a significant increase of survival and in a slower disease progression in the two syngenic GBM mouse models. In conclusion, our results confirm that MB-ultrasound might ultimately be an effective technology to improve the therapy of GBM, and they provide for the first time evidence that combining MB-FUS with DOX treatment is effective in syngenic mouse models for GBM which can serve as preclinical models to study the impact of immune system on the therapeutic application of MB-FUS chemotherapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Brain Neoplasms/drug therapy , Doxorubicin/administration & dosage , Drug Delivery Systems , Glioblastoma/drug therapy , Microbubbles , Animals , Brain/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Glioblastoma/metabolism , Mice , Sonication
SELECTION OF CITATIONS
SEARCH DETAIL
...