Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 14: 908, 2020.
Article in English | MEDLINE | ID: mdl-32982680

ABSTRACT

Blood-brain barrier opening (BBBO) with pulsed Focused Ultrasound (pFUS) and microbubbles (MB) has received increasing interest as a method for neurotherapeutics of the central nervous system. In general, conventional MRI [i.e., T2w, T2∗w, gadolinium (Gd) enhanced T1w] is used to monitor the effects of pFUS+MB on BBBO and/or assess whether sonication results in parenchymal damage. This study employed multimodal MRI techniques and 18F-Fludeoxyglucose (FDG) PET to evaluate the effects of single and multiple weekly pFUS+MB sessions on morphology and glucose utilization levels in the rat cortex and hippocampus. pFUS was performed with 0.548 MHz transducer with a slow infusion over 1 min of OptisonTM (5-8 × 107 MB) in nine focal points in cortex and four in hippocampus. During pFUS+MB treatment, Gd-T1w was performed at 3 T to confirm BBBO, along with subsequent T2w, T2∗w, DTI and glucose CEST (glucoCEST)-weighted imaging by high field 9.4 T and compared with FDG-PET and immunohistochemistry. Animals receiving a single pFUS+MB exhibited minimal hypointense voxels on T2∗w. Brains receiving multiple pFUS+MB treatments demonstrated persistent T2w and T2∗ abnormalities associated with changes in DTI and glucoCEST when compared to contralateral parenchyma. Decreased glucoCEST contrast was substantiated by FDG-PET in cortex following multiple sonications. Immunohistochemistry showed significantly dilated vessels and decreased neuronal glucose transporter (GLUT3) expression in sonicated cortex and hippocampus without changes in neuronal counts. These results suggest the importance to standardize MRI protocols in concert with advanced imaging techniques when evaluating long term effects of pFUS+MB BBBO in clinical trials for neurological diseases.

2.
J Neuroinflammation ; 16(1): 155, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31345243

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics' delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. METHODS: Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5-8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. RESULTS: In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. CONCLUSION: Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Microglia/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Female , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Rats , Rats, Sprague-Dawley , Sonication
3.
Theranostics ; 8(17): 4837-4855, 2018.
Article in English | MEDLINE | ID: mdl-30279741

ABSTRACT

Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.


Subject(s)
Cerebral Cortex/pathology , Cerebral Cortex/radiation effects , Hippocampus/pathology , Hippocampus/radiation effects , Microbubbles/adverse effects , Ultrasonography/adverse effects , Animals , Histocytochemistry , Longitudinal Studies , Magnetic Resonance Imaging , Rats, Sprague-Dawley
4.
Theranostics ; 8(8): 2245-2248, 2018.
Article in English | MEDLINE | ID: mdl-29722362

ABSTRACT

This editorial highlights the findings of McMahon [1] and demonstrates the need for careful attention to experimental conditions that influence microbubble concentration and pharmacokinetics contributed to focused ultrasound-induced blood brain barrier opening and sterile inflammation.


Subject(s)
Blood-Brain Barrier , Microbubbles , Attention , Humans , Inflammation , Permeability
6.
Proc Natl Acad Sci U S A ; 114(1): E75-E84, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27994152

ABSTRACT

MRI-guided pulsed focused ultrasound (pFUS) combined with systemic infusion of ultrasound contrast agent microbubbles (MB) causes localized blood-brain barrier (BBB) disruption that is currently being advocated for increasing drug or gene delivery in neurological diseases. The mechanical acoustic cavitation effects of opening the BBB by low-intensity pFUS+MB, as evidenced by contrast-enhanced MRI, resulted in an immediate damage-associated molecular pattern (DAMP) response including elevations in heat-shock protein 70, IL-1, IL-18, and TNFα indicative of a sterile inflammatory response (SIR) in the parenchyma. Concurrent with DAMP presentation, significant elevations in proinflammatory, antiinflammatory, and trophic factors along with neurotrophic and neurogenesis factors were detected; these elevations lasted 24 h. Transcriptomic analysis of sonicated brain supported the proteomic findings and indicated that the SIR was facilitated through the induction of the NFκB pathway. Histological evaluation demonstrated increased albumin in the parenchyma that cleared by 24 h along with TUNEL+ neurons, activated astrocytes, microglia, and increased cell adhesion molecules in the vasculature. Infusion of fluorescent beads 3 d before pFUS+MB revealed the infiltration of CD68+ macrophages at 6 d postsonication, as is consistent with an innate immune response. pFUS+MB is being considered as part of a noninvasive adjuvant treatment for malignancy or neurodegenerative diseases. These results demonstrate that pFUS+MB induces an SIR compatible with ischemia or mild traumatic brain injury. Further investigation will be required before this approach can be widely implemented in clinical trials.


Subject(s)
Blood-Brain Barrier/physiology , Brain/physiopathology , Drug Delivery Systems/methods , Gene Transfer Techniques , Sonication/methods , Ultrasonography/methods , Animals , Astrocytes/metabolism , Cell Adhesion Molecules/metabolism , Female , HSP70 Heat-Shock Proteins/metabolism , Inflammation/pathology , Interleukin-1/metabolism , Interleukin-18/metabolism , Macrophages/immunology , Microglia/metabolism , Neurodegenerative Diseases/therapy , Parenchymal Tissue/pathology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
7.
Nanomedicine ; 13(2): 503-513, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27520728

ABSTRACT

Stem cell-based therapies have become a major focus in regenerative medicine and to treat diseases. A straightforward approach combining three drugs, heparin (H), protamine (P) with ferumoxytol (F) in the form of nanocomplexes (NCs) effectively labeled stem cells for cellular MRI. We report on the physicochemical characteristics for optimizing the H, P, and F components in different ratios, and mixing sequences, producing NCs that varied in hydrodynamic size. NC size depended on the order in which drugs were mixed in media. Electron microscopy of HPF or FHP showed that F was located on the surface of spheroidal shaped HP complexes. Human stem cells incubated with FHP NCs resulted in a significantly greater iron concentration per cell compared to that found in HPF NCs with the same concentration of F. These results indicate that FHP could be useful for labeling stem cells in translational studies in the clinic.


Subject(s)
Ferrosoferric Oxide , Heparin , Protamines , Stem Cells , Cell Tracking , Humans , Magnetic Resonance Imaging , Magnetics , Nanoparticles , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...