Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 11(2): 175-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390440

ABSTRACT

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.


Subject(s)
Biosensing Techniques/methods , Calcium/metabolism , Hippocampus/metabolism , Luminescent Proteins/metabolism , Neurons/metabolism , T-Lymphocytes/metabolism , Troponin C/metabolism , Animals , Animals, Newborn , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Lymphocyte Activation , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Molecular Sequence Data , Neurons/cytology , Rats , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...