Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
2.
Dokl Biochem Biophys ; 495(1): 342-346, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33368048

ABSTRACT

This work provides the first characteristics of the rhodopsin SpaR from Sphingomonas paucimobilis, aerobic bacteria associated with opportunistic infections. The sequence analysis of SpaR has shown that this protein has unusual DTS motif which has never reported in rhodopsins from Proteobacteria. We report that SpaR operates as an outward proton pump at low pH; however, proton pumping is almost absent at neutral and alkaline pH. The photocycle of this rhodopsin in detergent micelles slows down with an increase in pH because of longer Schiff base reprotonation. Our results show that the novel microbial ion transporter SpaR of interest both as an object for basic research of membrane proteins and as a promising optogenetic tool.


Subject(s)
Proton Pumps/metabolism , Rhodopsin/metabolism , Rhodopsins, Microbial/metabolism , Sphingomonas/metabolism , Hydrogen-Ion Concentration , Light , Optogenetics/methods , Proton Pumps/genetics , Rhodopsin/genetics , Rhodopsins, Microbial/genetics , Sphingomonas/genetics
3.
Sci Rep ; 9(1): 18547, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811229

ABSTRACT

Membrane integral ATP synthases produce adenosine triphosphate, the universal "energy currency" of most organisms. However, important details of proton driven energy conversion are still unknown. We present the first high-resolution structure (2.3 Å) of the in meso crystallized c-ring of 14 subunits from spinach chloroplasts. The structure reveals molecular mechanisms of intersubunit contacts in the c14-ring, and it shows additional electron densities inside the c-ring which form circles parallel to the membrane plane. Similar densities were found in all known high-resolution structures of c-rings of F1FO ATP synthases from archaea and bacteria to eukaryotes. The densities might originate from isoprenoid quinones (such as coenzyme Q in mitochondria and plastoquinone in chloroplasts) that is consistent with differential UV-Vis spectroscopy of the c-ring samples, unusually large distance between polar/apolar interfaces inside the c-ring and universality among different species. Although additional experiments are required to verify this hypothesis, coenzyme Q and its analogues known as electron carriers of bioenergetic chains may be universal cofactors of ATP synthases, stabilizing c-ring and prevent ion leakage through it.


Subject(s)
Mitochondrial Proton-Translocating ATPases/ultrastructure , Plant Proteins/ultrastructure , Protein Structure, Quaternary , Adenosine Triphosphate/biosynthesis , Chloroplasts/enzymology , Coenzymes/metabolism , Crystallography, X-Ray , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Plant Proteins/metabolism , Protein Conformation , Protein Subunits/metabolism , Spinacia oleracea/enzymology , Ubiquinone/metabolism
4.
Ontogenez ; 42(2): 133-45, 2011.
Article in Russian | MEDLINE | ID: mdl-21542342

ABSTRACT

Dispermic androgenesis was used to produce, for the first time, an androgenetic progeny of the Siberian sturgeon (Acipenser baerii) and the androgenetic nuclear cytoplasmic hybrids (Siberian sturgeon, A. baerii x Russian sturgeon, A. gueldenstaedtii) using cryopreserved sperm. Microsatellite DNA analysis confirmed exclusively paternal inheritance in the androgenetic progeny of Siberian sturgeon. Heterozygotes for certain microsatellite loci were detected among the androgenetic hybrids, thereby confirming a dispermic nature of androgenesis. According to the data of comparative morphological analysis, the obtained androgenetic hybrid, by the age of 15 months old, was completely identical to the paternal species. Both a female and a male were detected in the androgenetic sturgeon progenies, which is of interest for producing bisexual progenies via androgenesis. The data of this study confirm the feasibility of dispermic androgenesis using cryopreserved sperm to preserve and recover the gene pools of endangered sturgeon species.


Subject(s)
Chimera/physiology , Cryopreservation , Endangered Species , Fishes/physiology , Reproduction, Asexual/physiology , Spermatozoa/physiology , Animals , Chimera/anatomy & histology , Female , Fishes/anatomy & histology , Male , Microsatellite Repeats/physiology , Siberia , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...